
Specifying and analisying SOC applications with
COWS

– Applications in orchestration of web services –

Rosario Pugliese and Francesco Tiezzi

Dipartimento di Sistemi e Informatica
Università degli Studi di Firenze

SEFM School 2010
“Advanced applications of model-checking techniques”

Pisa, Italy - September 7th, 2010

1

About this talk
Title
Specifying and analisying SOC applications with COWS

Domain
Software engineering methodologies for service-oriented applications

Outline
Scenario and motivations

A gentle introduction to COWS

COWS expressiveness

Analysis techniques for COWS specifications

Concluding remarks and future work

This afternoon: stochastic extension (by Paola Quaglia)

Outline 2

About this talk
Title
Specifying and analisying SOC applications with COWS

Domain
Software engineering methodologies for service-oriented applications

Outline
Scenario and motivations

A gentle introduction to COWS

COWS expressiveness

Analysis techniques for COWS specifications

Concluding remarks and future work

This afternoon: stochastic extension (by Paola Quaglia)

Outline 2

About this talk
Title
Specifying and analisying SOC applications with COWS

Domain
Software engineering methodologies for service-oriented applications

Outline
Scenario and motivations

A gentle introduction to COWS

COWS expressiveness

Analysis techniques for COWS specifications

Concluding remarks and future work

This afternoon: stochastic extension (by Paola Quaglia)

Outline 2

About this talk
Title
Specifying and analisying SOC applications with COWS

Domain
Software engineering methodologies for service-oriented applications

Outline
Scenario and motivations

A gentle introduction to COWS

COWS expressiveness

Analysis techniques for COWS specifications

Concluding remarks and future work

This afternoon: stochastic extension (by Paola Quaglia)

Outline 2

About this talk
Title
Specifying and analisying SOC applications with COWS

Domain
Software engineering methodologies for service-oriented applications

Outline
Scenario and motivations

A gentle introduction to COWS

COWS expressiveness

Analysis techniques for COWS specifications

Concluding remarks and future work

This afternoon: stochastic extension (by Paola Quaglia)

Outline 2

About this talk
Title
Specifying and analisying SOC applications with COWS

Domain
Software engineering methodologies for service-oriented applications

Outline
Scenario and motivations

A gentle introduction to COWS

COWS expressiveness

Analysis techniques for COWS specifications

Concluding remarks and future work

This afternoon: stochastic extension (by Paola Quaglia)

Outline 2

About this talk
Title
Specifying and analisying SOC applications with COWS

Domain
Software engineering methodologies for service-oriented applications

Outline
Scenario and motivations

A gentle introduction to COWS

COWS expressiveness

Analysis techniques for COWS specifications

Concluding remarks and future work

This afternoon: stochastic extension (by Paola Quaglia)

Outline 2

Scenario and motivations

Scenario and Motivations 3

Service-Oriented Computing (SOC)

An emerging paradigm for distributed and e-business computing

Finds its origin in object-oriented and component-based software
development

Aims at enabling developers to build networks of integrated and
collaborative applications, regardless of

I the platform where the applications run (e.g., the operating system)
I the programming language used to develop them

through the use of loosely coupled, reusable software components

A modern attempt to cope with old problems related to
information interchange, software integration, and B2B

Many instantiations: e.g. grid computing and Web Services

Scenario and Motivations Service-Oriented Computing 4

Web Services

Make available the functionalities that a company wants to expose
over the Web, so that they can be exploited by other services

Their underlying architecture is the World Wide Web
I Widespread and extensively used platform
I Suitable to connect different companies and customers

Independently developed applications can be
I exposed as services
I interconnected by exploiting the Web infrastructure and the relative

standards, e.g. HTTP, XML, SOAP, WSDL and UDDI

Facilitate automated integration of newly built and legacy
applications, both within and across organizational boundaries

Scenario and Motivations Service-Oriented Computing 5

Web Services

WSDL
op.1 : type1
op.2 : type2

. . .
op.n : typen op.1

op.2

op.n

. . .

Java,
Python,
.NET,
C++,
. . .

Scenario and Motivations Service-Oriented Computing 6

Web Services

WSDL
op.1 : type1
op.2 : type2

. . .
op.n : typen op.1

op.2

op.n

. . .

Java,
Python,
.NET,
C++,
. . .

Application Server
(Tomcat, JBoss, WebSphere, . . .)

Web

SOAP

Scenario and Motivations Service-Oriented Computing 6

Web Services Composition
XML-based technologies like WSDL, UDDI and SOAP

I permit describing, locating and invoking web services
I are usually sufficient for simple B2B application integration needs

Creation of complex B2B applications and automated integration
of business processes across enterprises require managing such
features as

I asynchronous interactions
I concurrency
I workflow coordination
I business transaction activities and exceptions

. . . which the above mentioned standards do not deal with

This raises the need for designing and employing
Web Services composition languages,

an additional layer on top of the Web Services protocol stack

Scenario and Motivations Service-Oriented Computing 7

Orchestration vs. Choreography
Service composition permits to build complex services out of
simpler ones and is still an open challenge

There are two main views of web services composition
I Orchestration (= Executeable Process)

F Description of web services interactions, including the business logic
and execution order of the interactions

F Interactions may span applications and/or organizations, and result in
a long-lived, transactional process

F The process is always controlled from the perspective of one of the
business parties

F Main enabling technology: WS-BPEL (OASIS standard)

I Choreography (= Multi-party Collaboration)
F Description of the externally observable message exchanges

between multiple web services
F No party truly ‘owns’ the conversation
F More collaborative in nature: each party involved in the process

describes the role it plays in each interaction
F Main enabling technology: WS-CDL (W3C Recommendation)

Scenario and Motivations Service-Oriented Computing 8

Orchestration vs. Choreography
Service composition permits to build complex services out of
simpler ones and is still an open challenge

There are two main views of web services composition

WSDL

. . . WS 3

WSDL

. . .WS 1

WSDL

. . .WS 2

Orchestration

Process
flow

WSDL

. . . WS 3

WSDL

. . .WS 1

WSDL

. . .WS 2

Choreography

Collaboration

We focus on web service orchestration

Scenario and Motivations Service-Oriented Computing 8

Orchestration vs. Choreography
Service composition permits to build complex services out of
simpler ones and is still an open challenge

There are two main views of web services composition

WSDL

. . . WS 3

WSDL

. . .WS 1

WSDL

. . .WS 2

Orchestration

Process
flow

WSDL

WS 3

WSDL

WS 1

WSDL

WS 2

Choreography

Collaboration

We focus on web service orchestration

Scenario and Motivations Service-Oriented Computing 8

Services & Business processes
A process orchestrating web services is called business process
i.e. an active entity that invokes available services according to a
given set of rules to meet some business requirements

A business process specifies
I the potential execution order of operations originating from a

collection of Web Services
I the shared data passed between these services
I the trading partners that are involved in the joint process
I their roles with respect to the process
I joint exception handling conditions for the collection of Web

Services

and other factors that may influence how Web Services or
organizations participate in a process

Web service orchestration thus permits to program complex
inter-enterprise workflow tasks and business transactions

Scenario and Motivations Service-Oriented Computing 9

Services & Business processes
A process orchestrating web services is called business process
i.e. an active entity that invokes available services according to a
given set of rules to meet some business requirements

A business process specifies
I the potential execution order of operations originating from a

collection of Web Services
I the shared data passed between these services
I the trading partners that are involved in the joint process
I their roles with respect to the process
I joint exception handling conditions for the collection of Web

Services

and other factors that may influence how Web Services or
organizations participate in a process

Web service orchestration thus permits to program complex
inter-enterprise workflow tasks and business transactions

Scenario and Motivations Service-Oriented Computing 9

Services & Business processes
A process orchestrating web services is called business process
i.e. an active entity that invokes available services according to a
given set of rules to meet some business requirements

A business process specifies
I the potential execution order of operations originating from a

collection of Web Services
I the shared data passed between these services
I the trading partners that are involved in the joint process
I their roles with respect to the process
I joint exception handling conditions for the collection of Web

Services

and other factors that may influence how Web Services or
organizations participate in a process

Web service orchestration thus permits to program complex
inter-enterprise workflow tasks and business transactions

Scenario and Motivations Service-Oriented Computing 9

Services & Business processes

Business processes can be exposed as web services

Scenario and Motivations Service-Oriented Computing 10

Services & Business processes

Business processes can be exposed as web services

WSDL

. . . WS 2

WSDL

. . . WS 4

WSDL

. . .WS 1

WSDL

. . .WS 3

Scenario and Motivations Service-Oriented Computing 10

Services & Business processes

Business processes can be exposed as web services

WSDL

. . . WS 2

WSDL

. . . WS 4

WSDL

. . .WS 1

WSDL

. . .WS 3

Business
Process

Scenario and Motivations Service-Oriented Computing 10

Services & Business processes

Business processes can be exposed as web services

WSDL

WSDL

. . . WS 2

WSDL

. . . WS 4

WSDL

. . .WS 1

WSDL

. . .WS 3

Business
Process

client

Scenario and Motivations Service-Oriented Computing 10

Services & Business processes

Business processes can be exposed as web services

WSDL

WSDL

. . . WS 2

WSDL

. . . WS 4

WSDL

. . .WS 1

WSDL

. . .WS 3

Business
Process

client

Scenario and Motivations Service-Oriented Computing 10

Instantiation & Message Correlation

To serve clients’ requests service instances are created

When a message arrives, it must be delivered:
I either to a new instance (new conversation)
I or to an existing instance (old conversation)

Message correlation

The message content permits identifying the proper target instance

Scenario and Motivations Service-Oriented Computing 11

Instantiation & Message Correlation

To serve clients’ requests service instances are created

When a message arrives, it must be delivered:
I either to a new instance (new conversation)
I or to an existing instance (old conversation)

Client 1 Business Process

Client 2

Message correlation

The message content permits identifying the proper target instance

Scenario and Motivations Service-Oriented Computing 11

Instantiation & Message Correlation

To serve clients’ requests service instances are created

When a message arrives, it must be delivered:
I either to a new instance (new conversation)
I or to an existing instance (old conversation)

Client 1 Business Process

Client 2

Message correlation

The message content permits identifying the proper target instance

Scenario and Motivations Service-Oriented Computing 11

Instantiation & Message Correlation

To serve clients’ requests service instances are created

When a message arrives, it must be delivered:
I either to a new instance (new conversation)
I or to an existing instance (old conversation)

Client 1 Business Process

Instance 1

Client 2

Message correlation

The message content permits identifying the proper target instance

Scenario and Motivations Service-Oriented Computing 11

Instantiation & Message Correlation

To serve clients’ requests service instances are created

When a message arrives, it must be delivered:
I either to a new instance (new conversation)
I or to an existing instance (old conversation)

Client 1 Business Process

Instance 1

Client 2

Message correlation

The message content permits identifying the proper target instance

Scenario and Motivations Service-Oriented Computing 11

Instantiation & Message Correlation

To serve clients’ requests service instances are created

When a message arrives, it must be delivered:
I either to a new instance (new conversation)
I or to an existing instance (old conversation)

Client 1 Business Process

Instance 1

Client 2
Instance 2

Message correlation

The message content permits identifying the proper target instance

Scenario and Motivations Service-Oriented Computing 11

Instantiation & Message Correlation

To serve clients’ requests service instances are created

When a message arrives, it must be delivered:
I either to a new instance (new conversation)
I or to an existing instance (old conversation)

Client 1 Business Process

Instance 1

Client 2
Instance 2

Message correlation

The message content permits identifying the proper target instance

Scenario and Motivations Service-Oriented Computing 11

Instantiation & Message Correlation

To serve clients’ requests service instances are created

When a message arrives, it must be delivered:
I either to a new instance (new conversation)
I or to an existing instance (old conversation)

Client 1 Business Process

Instance 1

Client 2
Instance 2

Message correlation

The message content permits identifying the proper target instance

Scenario and Motivations Service-Oriented Computing 11

Instantiation & Message Correlation

To serve clients’ requests service instances are created

When a message arrives, it must be delivered:
I either to a new instance (new conversation)
I or to an existing instance (old conversation)

Client 1 Business Process

Instance 1

Client 2
Instance 2

Message correlation

The message content permits identifying the proper target instance

Scenario and Motivations Service-Oriented Computing 11

Instantiation & Message Correlation

To serve clients’ requests service instances are created

When a message arrives, it must be delivered:
I either to a new instance (new conversation)
I or to an existing instance (old conversation)

Client 1 Business Process

Instance 1

Client 2
Instance 2

Message correlation

The message content permits identifying the proper target instance

Scenario and Motivations Service-Oriented Computing 11

Instantiation & Message Correlation

To serve clients’ requests service instances are created

When a message arrives, it must be delivered:
I either to a new instance (new conversation)
I or to an existing instance (old conversation)

Client 1 Business Process

Instance 1

Client 2
Instance 2

Message correlation

The message content permits identifying the proper target instance

Scenario and Motivations Service-Oriented Computing 11

Instantiation & Message Correlation

To serve clients’ requests service instances are created

When a message arrives, it must be delivered:
I either to a new instance (new conversation)
I or to an existing instance (old conversation)

Client 1 Business Process

Instance 1

Client 2
Instance 2

Message correlation

The message content permits identifying the proper target instance

Scenario and Motivations Service-Oriented Computing 11

Instantiation & Message Correlation
To serve clients’ requests service instances are created

When a message arrives, it must be delivered:
I either to a new instance (new conversation)
I or to an existing instance (old conversation)

Message correlation permits
I integrating asynchronous services,

that take from a few minutes to some days to complete
I tieing messages together in order to build long-lived interactions
I implementing statefull multiparty conversations

Scenario and Motivations Service-Oriented Computing 11

Instantiation & Message Correlation
To serve clients’ requests service instances are created

When a message arrives, it must be delivered:
I either to a new instance (new conversation)
I or to an existing instance (old conversation)

Message correlation permits
I integrating asynchronous services,

that take from a few minutes to some days to complete
I tieing messages together in order to build long-lived interactions
I implementing statefull multiparty conversations

Client 1 Business Process

Client 2

Scenario and Motivations Service-Oriented Computing 11

Instantiation & Message Correlation
To serve clients’ requests service instances are created

When a message arrives, it must be delivered:
I either to a new instance (new conversation)
I or to an existing instance (old conversation)

Message correlation permits
I integrating asynchronous services,

that take from a few minutes to some days to complete
I tieing messages together in order to build long-lived interactions
I implementing statefull multiparty conversations

Client 1 Business Process

Client 2

Scenario and Motivations Service-Oriented Computing 11

Instantiation & Message Correlation
To serve clients’ requests service instances are created

When a message arrives, it must be delivered:
I either to a new instance (new conversation)
I or to an existing instance (old conversation)

Message correlation permits
I integrating asynchronous services,

that take from a few minutes to some days to complete
I tieing messages together in order to build long-lived interactions
I implementing statefull multiparty conversations

Client 1 Business Process

Instance

Client 2

Scenario and Motivations Service-Oriented Computing 11

Instantiation & Message Correlation
To serve clients’ requests service instances are created

When a message arrives, it must be delivered:
I either to a new instance (new conversation)
I or to an existing instance (old conversation)

Message correlation permits
I integrating asynchronous services,

that take from a few minutes to some days to complete
I tieing messages together in order to build long-lived interactions
I implementing statefull multiparty conversations

Client 1 Business Process

Instance

Client 2

Scenario and Motivations Service-Oriented Computing 11

Instantiation & Message Correlation
To serve clients’ requests service instances are created

When a message arrives, it must be delivered:
I either to a new instance (new conversation)
I or to an existing instance (old conversation)

Message correlation permits
I integrating asynchronous services,

that take from a few minutes to some days to complete
I tieing messages together in order to build long-lived interactions
I implementing statefull multiparty conversations

Client 1 Business Process

Instance

Client 2

Scenario and Motivations Service-Oriented Computing 11

Web Services Composition Languages

Different organizations have been involved and are presently
working on the design of languages for specifying business
processes

Two WS-BPEL’s forerunners are
I Microsoft’s XLANG

a block-structured language with basic control flow structures
F e.g. sequence, switch (conditional), while (looping), all (parallel) and

pick (choice based on timing or external events)

I IBM’s WSFL (Web Services Flow Language)
a language for specifying arbitrary directed acyclic graphs

Afterwards, the two proposals have been combined into a new
language, WS-BPEL, that has been submitted to OASIS for
standardization also by BEA systems, SAP and Siebel Systems

Scenario and Motivations Service-Oriented Computing 12

WS-BPEL

Web Services Business Process Execution Language Version 2.0

Is an standard (11 April 2007)

Is the most widespread language for orchestration of Web
Services

Has an XML-based syntax and relies on the following XML-based
specifications

I WSDL for interfaces
I XML Schema for types
I XPath for expressions

Scenario and Motivations Service-Oriented Computing 13

WS-BPEL: basic activities

to do nothing

to invoke an operation offered by a (partner) service
I partner services are identified by partner links

to wait for a request to arrive

to send a message in reply to a previously received
request

to update the values of variables with new data

Scenario and Motivations Service-Oriented Computing 14

WS-BPEL: control flow activities

to perform a collection of activities
in sequential order

to select exactly one activity for
execution from two alternatives

to repeat an activity as long as
a given condition is true

Scenario and Motivations Service-Oriented Computing 15

WS-BPEL: control flow activities

to wait for one of several possible
requests to arrive

to concurrently perform a set
of activities (flow activity)

Scenario and Motivations Service-Oriented Computing 16

WS-BPEL: fault and compensation
Fault handling: similar to exception handling of ‘classic’
programming languages

Compensation: execution of specific activities (attempting) to
reverse the effects of previously executed activities

Scenario and Motivations Service-Oriented Computing 17

WS-BPEL: fault and compensation
Fault handling: similar to exception handling of ‘classic’
programming languages

Compensation: execution of specific activities (attempting) to
reverse the effects of previously executed activities

Scope activity: groups a primary activity together with fault
handling activities and a compensation handling activity

Scenario and Motivations Service-Oriented Computing 17

WS-BPEL: fault and compensation

to immediately terminate an instance

to generate a fault from inside an instance

to rethrow the fault that was originally caught by the
immediately enclosing fault handler

to start compensation on all inner scopes that have
already completed successfully, in the reverse order of completion

to start compensation of a specified inner scope
that has already completed successfully

Scenario and Motivations Service-Oriented Computing 18

WS-BPEL: other aspects

Termination and event handlers within scope activities

Synchronization dependencies within flow activities

repeatUntil and forEach activities

Timed activities

Scenario and Motivations Service-Oriented Computing 19

WS-BPEL engines
Three of the most known freely available WS-BPEL engines

Oracle BPEL Process Manager 10.1.3
http://www.oracle.com/technology/bpel

ActiveBPEL 4.1
http://www.activevos.com

Apache ODE 1.1.1
http://ode.apache.org

Scenario and Motivations Service-Oriented Computing 20

Motivation

Deficiency
Current software engineering technologies for SOC

remain at a linguistic level
do not support analytical tools for checking that SOC applications
enjoy desirable correctness properties

Goal
Develop formal reasoning mechanisms and analytical tools for
checking that services (possibly resulting from a composition) meet
desirable properties and do not manifest unexpected behaviors

Scenario and Motivations Motivation 21

Motivation

Deficiency
Current software engineering technologies for SOC

remain at a linguistic level
do not support analytical tools for checking that SOC applications
enjoy desirable correctness properties

Goal
Develop formal reasoning mechanisms and analytical tools for
checking that services (possibly resulting from a composition) meet
desirable properties and do not manifest unexpected behaviors

Scenario and Motivations Motivation 21

Approach

Goal
Developing formal reasoning mechanisms and analytical tools for
checking that the services resulting from a composition meet desirable
correctness properties and do not manifest unexpected behaviors

Approach: rely on Process Calculi
Convey in a distilled form the paradigm at the heart of SOC (being
defined algebraically, they are inherently compositional)
Provide linguistic formalisms for description of service-based
applications and their composition
Hand down a large set of reasoning mechanisms and analytical
tools, e.g. typing systems and model checkers

Scenario and Motivations Motivation 22

Approach

Goal
Developing formal reasoning mechanisms and analytical tools for
checking that the services resulting from a composition meet desirable
correctness properties and do not manifest unexpected behaviors

Approach: rely on Process Calculi
Convey in a distilled form the paradigm at the heart of SOC (being
defined algebraically, they are inherently compositional)
Provide linguistic formalisms for description of service-based
applications and their composition
Hand down a large set of reasoning mechanisms and analytical
tools, e.g. typing systems and model checkers

Scenario and Motivations Motivation 22

Process Calculi for SOC

To model service composition, many process calculi-like
formalisms have been designed

Most of them only consider a few specific features separately,
possibly by embedding ‘ad hoc’ constructs within some
well-studied process calculus
(e.g., the variants of CSP/π-calculus with transactions)

One major goal is assessing the adequacy of diverse sets of
primitives w.r.t. modelling, combining and analysing
service-oriented systems

Scenario and Motivations Motivation 23

Process Calculi for SOC: an overview

Process calculi for SOC can be classified according to the
approach used for maintaining the link between caller and callee

I Sessions: the link is determined by a private channel that is
implicitly created when the first message exchange of a
conversation takes place

I Correlations: the link is determined by correlation values included
in the exchanged messages

I No link: some works do not take into account this aspect
e.g. webπ, webπ∞, CSP/π-calculus + transactions, . . .

Scenario and Motivations Motivation 24

Process Calculi for SOC: an overview

Process calculi for SOC can be classified according to the
approach used for maintaining the link between caller and callee

I Sessions: the link is determined by a private channel that is
implicitly created when the first message exchange of a
conversation takes place

I Correlations: the link is determined by correlation values included
in the exchanged messages

I No link: some works do not take into account this aspect
e.g. webπ, webπ∞, CSP/π-calculus + transactions, . . .

Scenario and Motivations Motivation 24

Process Calculi for SOC: an overview
Process calculi for SOC can be classified according to the
approach to maintain the link between caller and callee

I Sessions: the link is determined by a private channel that is
implicitly created when the first message exchange of a
conversation takes place

F dyadic: they can be further grouped according to the inter-session
communication mechanism
- CASPIS: dataflow communication
- SSCC: stream-based communication
- π-calculus + sessions (in many works): session delegation

F multiparty:
- Conversation Calculus, µse,
π-calculus + (asynchronous/synchronous) multiparty sessions

I Correlations: the link is determined by correlation values included
in the exchanged messages

F stateful: every service instance has an explicit state
- WS-CALCULUS
- SOCK

F stateless: state is not explicitly modelled
- COWS

Scenario and Motivations Motivation 25

Process Calculi for SOC: an overview
Process calculi for SOC can be classified according to the
approach to maintain the link between caller and callee

I Sessions: the link is determined by a private channel that is
implicitly created when the first message exchange of a
conversation takes place

F dyadic: they can be further grouped according to the inter-session
communication mechanism
- CASPIS: dataflow communication
- SSCC: stream-based communication
- π-calculus + sessions (in many works): delegation

F multiparty:
- Conversation Calculus, µse
π-calculus + (asynchronous/synchronous) multiparty sessions

I Correlations: the link is determined by correlation values included
in the exchanged messages

F stateful: every service instance has an explicit state
- WS-CALCULUS
- SOCK

F stateless: state is not explicitly modelled
- COWS

Scenario and Motivations Motivation 25

Process Calculi for SOC: an overview
Process calculi for SOC can be classified according to the
approach to maintain the link between caller and callee

I Sessions: the link is determined by a private channel that is
implicitly created when the first message exchange of a
conversation takes place

I Correlations: the link is determined by correlation values included
in the exchanged messages

F stateful: every service instance has an explicit state
- WS-CALCULUS
- SOCK

F stateless: state is not explicitly modelled
- COWS

COWS [ESOP’07]
A process calculus for specifying and combining service-oriented
applications, while modelling their dynamic behaviour

Scenario and Motivations Motivation 25

A gentle introduction to COWS

A gentle introduction to COWS 26

COWS: a Calculus for Orchestration of Web Services

WS-BPEL

Inspired by
I the standard WS-BPEL for WS orchestration
I previous work on process calculi

Indeed, COWS intends to be a foundational model not specifically
tight to Web services’ current technologies

COWS combines in an original way a number of constructs and
features borrowed from well-known process calculi

A gentle introduction to COWS COWS 27

COWS: a Calculus for Orchestration of Web Services

WS-BPEL Process
calculi

Inspired by
I the standard WS-BPEL for WS orchestration
I previous work on process calculi

Indeed, COWS intends to be a foundational model not specifically
tight to Web services’ current technologies

COWS combines in an original way a number of constructs and
features borrowed from well-known process calculi

A gentle introduction to COWS COWS 27

COWS: a Calculus for Orchestration of Web Services

WS-BPEL Process
calculi

COWS

Inspired by
I the standard WS-BPEL for WS orchestration
I previous work on process calculi

Indeed, COWS intends to be a foundational model not specifically
tight to Web services’ current technologies

COWS combines in an original way a number of constructs and
features borrowed from well-known process calculi

A gentle introduction to COWS COWS 27

The notion of service in COWS

O1

O2

O1 p2

p1
O3

O4

O3

y

p3

service logicservice logic

x,y

x,z

r

f(z)

e

e'

A gentle introduction to COWS COWS 28

The notion of service in COWS

O1

O2

O1 p2

p1
O3

O4

O3

y

p3

service logicservice logic

x,y

x,z

r

f(z)

e

e'

provided
operations

A gentle introduction to COWS COWS 28

The notion of service in COWS

O1

O2

O1 p2

p1
O3

O4

O3

y

p3

service logicservice logic

x,y

x,z

r

f(z)

e

e'

provided
operations invoked

operations
A gentle introduction to COWS COWS 28

The notion of service in COWS

O1

O2

O1 p2

p1
O3

O4

O3

y

p3

service logicservice logic

x,y

x,z

r

f(z)

e

e'

provided
operations invoked

operations

invoked
(partner) services

A gentle introduction to COWS COWS 28

The notion of service in COWS

O1

O2

O1 p2

p1
O3

O4

O3

y

p3

service logicservice logic

x,y

x,z

r

f(z)

e

e'

provided
operations invoked

operations

invoked
(partner) servicesCOWS

specification

A gentle introduction to COWS COWS 28

COWS in 3 steps

A gentle introduction to COWS COWS 29

COWS in three steps
COWS (Calculus for Orchestration of Web Services)

µCOWS (micro COWS)

µCOWSm (micro COWS minus priority)
Communication activities

Invoke
Control flow activities

Parallel composition
Replication

Receive

Choice
Delimitation

A gentle introduction to COWS COWS 30

COWS in three steps
COWS (Calculus for Orchestration of Web Services)

µCOWS (micro COWS)

µCOWSm (micro COWS minus priority)
Communication activities

Invoke
Control flow activities

Parallel composition
Replication

Receive

Choice
Delimitation

Priority in the parallel composition

A gentle introduction to COWS COWS 30

COWS in three steps
COWS (Calculus for Orchestration of Web Services)

µCOWS (micro COWS)

µCOWSm (micro COWS minus priority)
Communication activities

Invoke
Control flow activities

Parallel composition
Replication

Receive

Choice
Delimitation

Priority in the parallel composition

A gentle introduction to COWS COWS 30

COWS in three steps
COWS (Calculus for Orchestration of Web Services)

µCOWS (micro COWS)

µCOWSm (micro COWS minus priority)
Communication activities

Invoke
Control flow activities

Parallel composition
Replication

Receive

Choice
Delimitation

Priority in the parallel composition

Termination activities
Kill activity Protection

A gentle introduction to COWS COWS 30

COWS in three steps
COWS (Calculus for Orchestration of Web Services)

µCOWS (micro COWS)

µCOWSm (micro COWS minus priority)
Communication activities

Invoke
Control flow activities

Parallel composition
Replication

Receive

Choice
Delimitation

Priority in the parallel composition

Termination activities
Kill activity Protection

A gentle introduction to COWS COWS 30

Syntax of µCOWSm

s ::= (services)
u •u′!ε̄ (invoke)
|
∑r

i=0 gi .si (receive-guarded choice)
| s | s (parallel composition)
| [u] s (delimitation)
| ∗ s (replication)

g ::= (guards)
p •o?w̄ (receive)

(notations)
ε: expressions

x : variables
v : values

n,p,o: names
u: variables |names
w : variables |values

µCOWSm vs. π-calculus, fusion, Value-passing CCS, Dπ, . . .
• asynchronous and polyadic communication
• input− guarded choice
• polyadic synchronization
• localised channels

 π-calculus

• global scoping (and non− binding input)
}

fusion

• distinction between variables and values
}

vp CCS, App. π-calculus, Dπ

• pattern−matching
}

Klaim

A gentle introduction to COWS Syntax of µCOWSm 31

Syntax of µCOWSm

s ::= (services)
u •u′!ε̄ (invoke)
|
∑r

i=0 gi .si (receive-guarded choice)
| s | s (parallel composition)
| [u] s (delimitation)
| ∗ s (replication)

g ::= (guards)
p •o?w̄ (receive)

(notations)
ε: expressions

x : variables
v : values

n,p,o: names
u: variables |names
w : variables |values

Notations

The exact syntax of expressions is deliberately omitted

¯ denotes tuples of objects, e.g. w̄ is a tuple of variables and/or values

A gentle introduction to COWS Syntax of µCOWSm 31

Syntax of µCOWSm

s ::= (services)
u •u′!ε̄ (invoke)
|
∑r

i=0 gi .si (receive-guarded choice)
| s | s (parallel composition)
| [u] s (delimitation)
| ∗ s (replication)

g ::= (guards)
p •o?w̄ (receive)

(notations)
ε: expressions

x : variables
v : values

n,p,o: names
u: variables |names
w : variables |values

Communication activities

Services are provided and invoked through communication endpoints,
written as p •o (i.e. ‘partner name’ plus ‘operation name’)

Receive activities bind neither names nor variables

Communication is regulated by pattern-matching

Partner names and operation names can be exchanged when
communicating (only the ‘send capability’ is passed over)

Communication is asynchronous

A gentle introduction to COWS Syntax of µCOWSm 31

Syntax of µCOWSm

s ::= (services)
u •u′!ε̄ (invoke)
|
∑r

i=0 gi .si (receive-guarded choice)
| s | s (parallel composition)
| [u] s (delimitation)
| ∗ s (replication)

g ::= (guards)
p •o?w̄ (receive)

(notations)
ε: expressions

x : variables
v : values

n,p,o: names
u: variables |names
w : variables |values

Choice

+ abbreviates binary choice, while empty choice will be denoted by 0

A gentle introduction to COWS Syntax of µCOWSm 31

Syntax of µCOWSm

s ::= (services)
u •u′!ε̄ (invoke)
|
∑r

i=0 gi .si (receive-guarded choice)
| s | s (parallel composition)
| [u] s (delimitation)
| ∗ s (replication)

g ::= (guards)
p •o?w̄ (receive)

(notations)
ε: expressions

x : variables
v : values

n,p,o: names
u: variables |names
w : variables |values

Parallel composition

Permits interleaving executions of activities

A gentle introduction to COWS Syntax of µCOWSm 31

Syntax of µCOWSm

s ::= (services)
u •u′!ε̄ (invoke)
|
∑r

i=0 gi .si (receive-guarded choice)
| s | s (parallel composition)
| [u] s (delimitation)
| ∗ s (replication)

g ::= (guards)
p •o?w̄ (receive)

(notations)
ε: expressions

x : variables
v : values

n,p,o: names
u: variables |names
w : variables |values

Delimitation

Only one binding construct: [u] s binds u in the scope s

I free/bound names and variables and closed terms defined
accordingly

Delimitation is used to:
1 regulate the range of application of substitutions

2 generate fresh names

A gentle introduction to COWS Syntax of µCOWSm 31

Syntax of µCOWSm

s ::= (services)
u •u′!ε̄ (invoke)
|
∑r

i=0 gi .si (receive-guarded choice)
| s | s (parallel composition)
| [u] s (delimitation)
| ∗ s (replication)

g ::= (guards)
p •o?w̄ (receive)

(notations)
ε: expressions

x : variables
v : values

n,p,o: names
u: variables |names
w : variables |values

Replication

Permits implementing persistent services and recursive behaviours

A gentle introduction to COWS Syntax of µCOWSm 31

µCOWSm operational semantics

Labelled transition relation α−→
Label α is generated by the following grammar:

α ::= n� v̄ | n� w̄ | σ

where σ is a substitution
i.e. a function from variables to values (written as collections of pairs x 7→v)

Structural congruence ≡
Standard laws for

∑
, | and ∗ , plus:

[u] 0 ≡ 0
[u1] [u2] s ≡ [u2] [u1] s
s1 | [u] s2 ≡ [u] (s1 | s2) if u /∈ fu(s1)

fu(s) denotes the set of elements occurring free in s

A gentle introduction to COWS Operational semantics of µCOWSm 32

µCOWSm operational semantics

Labelled transition relation α−→
Label α is generated by the following grammar:

α ::= n� v̄ | n� w̄ | σ

where σ is a substitution
i.e. a function from variables to values (written as collections of pairs x 7→v)

Structural congruence ≡
Standard laws for

∑
, | and ∗ , plus:

[u] 0 ≡ 0
[u1] [u2] s ≡ [u2] [u1] s
s1 | [u] s2 ≡ [u] (s1 | s2) if u /∈ fu(s1)

fu(s) denotes the set of elements occurring free in s

A gentle introduction to COWS Operational semantics of µCOWSm 32

µCOWSm operational semantics

Labelled transition rules

[[ε̄]] = v̄

n!ε̄
n� v̄−−−−→ 0

1≤ j ≤ r∑r
i=1 ni ?w̄i .si

nj �w̄j−−−−−→ sj

s1
n� w̄−−−−−→ s′1 s2

n� v̄−−−−→ s′2 M(w̄ , v̄)=σ

s1 | s2
σ−−→ s′1 | s′2

s1
α−−→ s′1

s1 | s2
α−−→ s′1 | s2

s
σ]{x 7→v}−−−−−−−→ s′

[x] s σ−−→ s′ ·{x 7→ v}

s α−−→ s′ u /∈ u(α)

[u] s α−−→ [u] s′
s ≡ α−−→≡ s′

s α−−→ s′

A gentle introduction to COWS Operational semantics of µCOWSm 33

µCOWSm operational semantics

Labelled transition rules

[[ε̄]] = v̄

n!ε̄
n� v̄−−−−→ 0

1≤ j ≤ r∑r
i=1 ni ?w̄i .si

nj �w̄j−−−−−→ sj

s1
n� w̄−−−−−→ s′1 s2

n� v̄−−−−→ s′2 M(w̄ , v̄)=σ

s1 | s2
σ−−→ s′1 | s′2

s1
α−−→ s′1

s1 | s2
α−−→ s′1 | s2

s
σ]{x 7→v}−−−−−−−→ s′

[x] s σ−−→ s′ ·{x 7→ v}

s α−−→ s′ u /∈ u(α)

[u] s α−−→ [u] s′
s ≡ α−−→≡ s′

s α−−→ s′

Matching function

M(x , v) = {x 7→ v}
M(v , v) = ∅

M(〈〉, 〈〉) = ∅

M(w1, v1) = σ1 M(w̄2, v̄2) = σ2

M((w1, w̄2), (v1, v̄2)) = σ1] σ2

A gentle introduction to COWS Operational semantics of µCOWSm 33

µCOWSm operational semantics

Labelled transition rules

[[ε̄]] = v̄

n!ε̄
n� v̄−−−−→ 0

1≤ j ≤ r∑r
i=1 ni ?w̄i .si

nj �w̄j−−−−−→ sj

s1
n� w̄−−−−−→ s′1 s2

n� v̄−−−−→ s′2 M(w̄ , v̄)=σ

s1 | s2
σ−−→ s′1 | s′2

s1
α−−→ s′1

s1 | s2
α−−→ s′1 | s2

s
σ]{x 7→v}−−−−−−−→ s′

[x] s σ−−→ s′ ·{x 7→ v}

s α−−→ s′ u /∈ u(α)

[u] s α−−→ [u] s′
s ≡ α−−→≡ s′

s α−−→ s′

A gentle introduction to COWS Operational semantics of µCOWSm 33

µCOWSm: Invoke/receive activities & Choice

Invoke activities
Can proceed only if the expressions in the argument can be evaluated

Evaluation function [[_]]: takes closed expressions and returns values

[[ε̄]] = v̄

n!ε̄
n� v̄−−−−→ 0

Choice (among receive activities)

Offers an alternative choice of endpoints

It is not a binder for names and variables (delimitation is used to delimit
their scope)∑r

i=1 ni?w̄i .si
nj �w̄j−−−−−→ sj (1 ≤ j ≤ r)

A gentle introduction to COWS Operational semantics of µCOWSm 34

µCOWSm: Parallel composition

Communication takes place when two parallel services perform
matching receive and invoke activities

s1
n� w̄−−−−−→ s′1 s2

n� v̄−−−−→ s′2 M(w̄ , v̄)=σ

s1 | s2
σ−−→ s′1 | s′2

Execution of parallel services is interleaved

s1
α−−→ s′1

s1 | s2
α−−→ s′1 | s2

Matching function

M(x , v) = {x 7→ v}
M(v , v) = ∅

M(〈〉, 〈〉) = ∅

M(w1, v1) = σ1 M(w̄2, v̄2) = σ2

M((w1, w̄2), (v1, v̄2)) = σ1] σ2

A gentle introduction to COWS Operational semantics of µCOWSm 35

µCOWSm: Parallel composition

Communication takes place when two parallel services perform
matching receive and invoke activities

s1
n� w̄−−−−−→ s′1 s2

n� v̄−−−−→ s′2 M(w̄ , v̄)=σ

s1 | s2
σ−−→ s′1 | s′2

Execution of parallel services is interleaved

s1
α−−→ s′1

s1 | s2
α−−→ s′1 | s2

Matching function

M(x , v) = {x 7→ v}
M(v , v) = ∅

M(〈〉, 〈〉) = ∅

M(w1, v1) = σ1 M(w̄2, v̄2) = σ2

M((w1, w̄2), (v1, v̄2)) = σ1] σ2

A gentle introduction to COWS Operational semantics of µCOWSm 35

µCOWSm: Parallel composition

Communication takes place when two parallel services perform
matching receive and invoke activities

s1
n� w̄−−−−−→ s′1 s2

n� v̄−−−−→ s′2 M(w̄ , v̄)=σ

s1 | s2
σ−−→ s′1 | s′2

Execution of parallel services is interleaved

s1
α−−→ s′1

s1 | s2
α−−→ s′1 | s2

Matching function

M(x , v) = {x 7→ v}
M(v , v) = ∅

M(〈〉, 〈〉) = ∅

M(w1, v1) = σ1 M(w̄2, v̄2) = σ2

M((w1, w̄2), (v1, v̄2)) = σ1] σ2

A gentle introduction to COWS Operational semantics of µCOWSm 35

µCOWSm: Delimitation

[u] s behaves like s, except when the transition label α contains u

When the whole scope of a variable x is determined, and a
communication involving x within that scope is taking place the
delimitation is removed and the substitution for x is performed

s
α−−→ s′ u /∈ u(α)

[u] s
α−−→ [u] s′

s
σ]{x 7→v}−−−−−−−→ s′

[x] s
σ−−→ s′ ·{x 7→ v}

Substitutions (ranged over by σ):

functions from variables to values (written as collections of pairs x 7→ v)

σ1] σ2 denotes the union of σ1 and σ2 when they have disjoint domains

u(α) avoids capturing endpoints of actual communications,
it denotes the set of elements occurring in α,

A gentle introduction to COWS Operational semantics of µCOWSm 36

µCOWSm operational semantics

Labelled transition rules

[[ε̄]] = v̄

n!ε̄
n� v̄−−−−→ 0

1≤ j ≤ r∑r
i=1 ni ?w̄i .si

nj �w̄j−−−−−→ sj

s1
n� w̄−−−−−→ s′1 s2

n� v̄−−−−→ s′2 M(w̄ , v̄)=σ

s1 | s2
σ−−→ s′1 | s′2

s1
α−−→ s′1

s1 | s2
α−−→ s′1 | s2

s
σ]{x 7→v}−−−−−−−→ s′

[x] s σ−−→ s′ ·{x 7→ v}

s α−−→ s′ u /∈ u(α)

[u] s α−−→ [u] s′
s ≡ α−−→≡ s′

s α−−→ s′

A gentle introduction to COWS Operational semantics of µCOWSm 37

µCOWSm: simple bank service example

bank

bank servicebank service

“ok”/ “fail”

charge

resp

client
service

c,1234,
100€

charge

respc xc
x

bank

...

xc,xcc,
xamount

bank • charge!〈c,1234,100AC〉 [xc, xcc, xamount]
| [x] (c • resp?〈x〉.s | s′) bank • charge?〈xc, xcc, xamount〉.

xc • resp!〈chk(xcc , xamount)〉

A gentle introduction to COWS Operational semantics of µCOWSm 38

µCOWSm: simple bank service example

bank

bank servicebank service

“ok”/ “fail”

charge

resp

client
service

c,1234,
100€

charge

respc xc
x

bank

...

xc,xcc,
xamount

bank • charge!〈c,1234,100AC〉 [xc, xcc, xamount]
| [x] (c • resp?〈x〉.s | s′) bank • charge?〈xc, xcc, xamount〉.

xc • resp!〈chk(xcc , xamount)〉

A gentle introduction to COWS Operational semantics of µCOWSm 38

µCOWSm: simple bank service example

bank

bank servicebank service

“ok”/ “fail”

charge

resp

client
service

c,1234,
100€

charge

respc xc
x...

xc,xcc,
xamount

bank • charge!〈c,1234,100AC〉 [xc, xcc, xamount]
| [x] (c • resp?〈x〉.s | s′) | bank • charge?〈xc, xcc, xamount〉.

xc • resp!〈chk(xcc , xamount)〉

A gentle introduction to COWS Operational semantics of µCOWSm 38

µCOWSm: simple bank service example

bank servicebank service

“ok”/ “fail” resp

client
service

respc c
x...

[x] (c • resp?〈x〉.s | s′) | c • resp!〈chk(1234,100AC)〉

A gentle introduction to COWS Operational semantics of µCOWSm 38

µCOWSm: simple bank service example

bank servicebank service

“ok”/ “fail” resp

client
service

respc x...

[x] (c • resp?〈x〉.s | s′) | c • resp!〈chk(1234,100AC)〉

A gentle introduction to COWS Operational semantics of µCOWSm 38

µCOWSm: simple bank service example

bank servicebank service

client
service
...

(s | s′) · {x 7→“ok”/“fail”} | 0

A gentle introduction to COWS Operational semantics of µCOWSm 38

µCOWSm: communication of private names

bank

bank servicebank service

“ok”/ “fail”

charge

resp

client
service

c,1234,id,
 100€

charge

respc xc
x

bank

...

xc,xcc,xid,
xamount

[id] [xc, xcc, xid, xamount]
(bank • charge!〈c,1234, id,100AC〉 bank • charge?〈xc, xcc, xid, xamount〉.
| [x] (c • resp?〈x〉.s | s′)) xc • resp!〈chk(xcc , xid , xamount)〉

A gentle introduction to COWS Operational semantics of µCOWSm 39

µCOWSm: communication of private names

bank

bank servicebank service

“ok”/ “fail”

charge

resp

client
service

c,1234,id,
 100€

charge

respc xc
x...

xc,xcc,xid,
xamount

[id] [xc, xcc, xid, xamount]
(bank • charge!〈c,1234, id,100AC〉 | bank • charge?〈xc, xcc, xid, xamount〉.
| [x] (c • resp?〈x〉.s | s′)) xc • resp!〈chk(xcc , xid , xamount)〉

A gentle introduction to COWS Operational semantics of µCOWSm 39

µCOWSm: communication of private names

bank

bank servicebank service

“ok”/ “fail”

charge

resp

client
service

c,1234,id,
 100€

charge

respc xc
x...

xc,xcc,xid,
xamount

≡

A gentle introduction to COWS Operational semantics of µCOWSm 39

µCOWSm: communication of private names

bank

bank servicebank service

“ok”/ “fail”

charge

resp

client
service

c,1234,id,
 100€

charge

respc xc
x...

xc,xcc,xid,
xamount

[id, xc, xcc, xid, xamount]((
bank • charge!〈c,1234, id,100AC〉
| [x] (c • resp?〈x〉.s | s′)

)
|
(

bank • charge?〈xc, xcc, xid, xamount〉.
xc • resp!〈chk(xcc , xid , xamount)〉

))

A gentle introduction to COWS Operational semantics of µCOWSm 39

µCOWSm: communication of private names

bank servicebank service

“ok”/ “fail” resp

client
service

respc xc
x...

[id]
([x] (c • resp?〈x〉.s | s′) | c • resp!〈chk(1234, id,100AC)〉)

A gentle introduction to COWS Operational semantics of µCOWSm 39

µCOWSm: persistent bank service example

bank

bank servicebank service

“ok”/ “fail”

charge

resp

client1 c1,1234,
100€charge

resp xc
x

bank

...

xc,xcc,
xamount *

client2 c2,5678,
200€charge

resp y

bank

...

c1

c2

∗ [xc, xcc, xamount] bank • charge?〈xc, xcc, xamount〉.xc • resp!〈chk(xcc , xamount)〉

A gentle introduction to COWS Operational semantics of µCOWSm 40

µCOWSm: persistent bank service example

bank

bank service

“ok”/ “fail”

charge

resp

client1 c1,1234,
100€charge

resp xc
x

bank

...

xc,xcc,
xamount *

client2 c2,5678,
200€charge

resp y

bank

...

c1

c2

bank • charge!〈c1,1234,100AC〉 | [x] c1 • resp?〈x〉.s1
| bank • charge!〈c2,5678,200AC〉 | [y] c2 • resp?〈y〉.s2

A gentle introduction to COWS Operational semantics of µCOWSm 40

µCOWSm: persistent bank service example

client1 c1,1234,
100€charge

respc1
x

bank

...

client2 c2,5678,
200€charge

resp y

bank

...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

c2

A gentle introduction to COWS Operational semantics of µCOWSm 40

µCOWSm: persistent bank service example

client1 c1,1234,
100€charge

respc1
x...

client2 c2,5678,
200€charge

resp y

bank

...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

c2

A gentle introduction to COWS Operational semantics of µCOWSm 40

µCOWSm: persistent bank service example

client1

respc1
x...

client2 c2,5678,
200€charge

resp y

bank

...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

c2

resp“ok”/ “fail”c1

A gentle introduction to COWS Operational semantics of µCOWSm 40

µCOWSm: persistent bank service example

c2,5678,
200€charge bank

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

resp“ok”/ “fail”c1

client1

respc1
x...

client2

resp y... c2

∗ [xc, xcc, xamount] bank • charge?〈xc, xcc, xamount〉.xc • resp!〈chk(xcc , xamount)〉
| c1 • resp!〈chk(1234,100AC)〉

A gentle introduction to COWS Operational semantics of µCOWSm 40

µCOWSm: persistent bank service example

client1

respc1
x...

client2

c2,5678,200€charge

resp y...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

c2

resp“ok”/ “fail”c1

A gentle introduction to COWS Operational semantics of µCOWSm 40

µCOWSm: persistent bank service example

respc1
x...

client2

resp y...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

c2

resp“ok”/ “fail”c1

resp“ok”/ “fail”c2

A gentle introduction to COWS Operational semantics of µCOWSm 40

µCOWSm: persistent bank service example

client1

respc1
x...

client2

resp y...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

c2

resp“ok”/ “fail”c1

resp“ok”/ “fail”c2

∗ [xc, xcc, xamount] bank • charge?〈xc, xcc, xamount〉.xc • resp!〈chk(xcc , xamount)〉
| c1 • resp!〈chk(1234,100AC)〉 | c2 • resp!〈chk(5678,200AC)〉

A gentle introduction to COWS Operational semantics of µCOWSm 40

µCOWSm: persistent bank service example

client1

respc1
x...

client2

resp y...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

c2

resp“ok”/ “fail”c1

resp“ok”/ “fail”

A gentle introduction to COWS Operational semantics of µCOWSm 40

µCOWSm: persistent bank service example

client1

respc1
x...

client2

...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

resp“ok”/ “fail”c1

A gentle introduction to COWS Operational semantics of µCOWSm 40

µCOWSm: persistent bank service example

client1

respc1
x...

client2

...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

resp“ok”/ “fail”

A gentle introduction to COWS Operational semantics of µCOWSm 40

µCOWSm: persistent bank service example

client1

...

client2

...

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

A gentle introduction to COWS Operational semantics of µCOWSm 40

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

check

ok
failbank

bankcheck

ok
fail

check,ok,failbank servicebank service

charge

“ok”/ “fail” respxc

xc,xcc,
xamount

* * creditRatingcreditRating

[check,ok, fail] (∗bankInterface | ∗ creditRating)

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

check

ok
failbank

bankcheck

ok
fail

check,ok,failbank service

charge

“ok”/ “fail” respxc

* * creditRatingxc,xcc,
xamount

[check,ok, fail] (∗bankInterface | ∗ creditRating)

bankInterface , [xc, xcc, xamount]
bank • charge?〈xc, xcc, xamount〉.
(bank • check!〈xcc, xamount〉
| bank •ok?〈xcc〉. xc • resp!〈“ok”〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”〉)
A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterface

check

ok
failbank

charge

“ok”/ “fail” respxc

*
check,ok,failbank service

xc,xcc,
xamount bankcheck

ok
fail

* creditRatingcreditRating

[check,ok, fail] (∗bankInterface | ∗ creditRating)

creditRating , [xcc, xa]
bank • check?〈xcc, xa〉.
[p,o] (p •o!〈〉 | p •o?〈〉.bank •ok!〈xcc〉

+ p •o?〈〉.bank • fail!〈xcc〉)

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

* * creditRatingcreditRating

client1

c1,1234,
100€
charge

x
bank

resp
c1

client2

c2,5678,
200€
charge

y
bank

resp
c2

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

* * creditRatingcreditRating

client1

c1,1234,
100€
charge

x

resp
c1

client2

c2,5678,
200€
charge

y
bank

resp
c2

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

* * creditRatingcreditRating

client1

x

resp
c1

client2

c2,5678,
200€
charge

y
bank

resp
c2

c1

check

ok
fail

bank

resp

1234
1234,100€

“ok”/ “fail”
1234

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

* * creditRatingcreditRating

client1

x

resp
c1

client2

c2,5678,
200€
charge

y
bank

resp
c2

c1

check

ok
fail

bank

resp

1234
1234,100€

“ok”/ “fail”
1234

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

* * creditRatingcreditRating

client1

x

resp
c1

client2

c2,5678,
200€
charge

y
bank

resp
c2

c1 ok
fail

bankresp
1234“ok”/ “fail”
1234

ok
failbank

1234
1234

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

client2

c2,5678,
200€
charge

y

resp
c2

c1 ok
fail

bankresp
1234“ok”/ “fail”
1234

ok
failbank

1234
1234

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

c1 ok
fail

bankresp
1234“ok”/ “fail”
1234

ok
failbank

1234
1234

client2

y

resp
c2

c2

check

ok
fail

bank

resp

5678
5678,200€

“ok”/ “fail”
5678

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

c1 ok
fail

bankresp
1234“ok”/ “fail”
1234

ok
failbank

1234
1234

client2

y

resp
c2

c2

check

ok
fail

bank

resp

5678
5678,200€

“ok”/ “fail”
5678

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

c1 ok
fail

bankresp
1234“ok”/ “fail”
1234

ok
failbank

1234
1234

client2

y

resp
c2

c2 ok
fail

bankresp
5678“ok”/ “fail”
5678

ok
failbank

5678
5678

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

c1 ok
fail

bankresp
1234“ok”/ “fail”
1234

ok
bank

1234

client2

y

resp
c2

c2 ok
fail

bankresp
5678“ok”/ “fail”
5678

ok
failbank

5678
5678

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

c1 ok
fail

bankresp
1234“ok”/ “fail”
1234

ok1234

client2

y

resp
c2

c2 ok
fail

bankresp
5678“ok”/ “fail”
5678

ok
failbank

5678
5678

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

c1 resp“ok”

client2

y

resp
c2

c2 ok
fail

bankresp
5678“ok”/ “fail”
5678

ok
failbank

5678
5678

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

c1 resp“ok”

client2

y

resp
c2

c2 ok
fail

bankresp
5678“ok”/ “fail”
5678 failbank 5678

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

c1 resp“ok”

client2

y

resp
c2

c2 ok
fail

bankresp
5678“ok”/ “fail”
5678 fail5678

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

c1 resp“ok”

client2

y

resp
c2

c2 resp“fail”

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1

x

resp
c1

resp“ok”

client2

y

resp
c2

c2 resp“fail”

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1 client2

y

resp
c2

c2 resp“fail”

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1 client2

y
resp
c2

resp“fail”

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 41

µCOWSm: compound bank service example

bank

bankInterfacebankInterface

bankcheck

check,ok,failbank servicebank service

charge
* * creditRatingcreditRating

client1 client2

xc,xcc,
xamount

A gentle introduction to COWS Operational semantics of µCOWSm 41

From µCOWSm to µCOWS

µCOWSm

A gentle introduction to COWS From µCOWSm to µCOWS 42

From µCOWSm to µCOWS

µCOWSm

+
Priority in the parallel composition

A gentle introduction to COWS From µCOWSm to µCOWS 42

From µCOWSm to µCOWS

µCOWSm

+
Priority in the parallel composition

=
µCOWS

A gentle introduction to COWS From µCOWSm to µCOWS 42

µCOWS: why priority in the parallel composition?

1 To deal with conflicting receives
I e.g. in case of multiple start activities

2 Parallel composition with priority can be used (together with
pattern-matching) as a coordination mechanism

I e.g. to model default behaviours, transparent session joining, . . .

We use a novel combination of dynamic priority with local pre-emption

dynamic priority: priority values of activities can change
as systems evolve

local pre-emption: priorities have a local scope,
i.e. prioritised activities can only pre-empt
activities in the same scope

A gentle introduction to COWS From µCOWSm to µCOWS 43

µCOWS: why priority in the parallel composition?

1 To deal with conflicting receives
I e.g. in case of multiple start activities

2 Parallel composition with priority can be used (together with
pattern-matching) as a coordination mechanism

I e.g. to model default behaviours, transparent session joining, . . .

We use a novel combination of dynamic priority with local pre-emption

dynamic priority: priority values of activities can change
as systems evolve

local pre-emption: priorities have a local scope,
i.e. prioritised activities can only pre-empt
activities in the same scope

A gentle introduction to COWS From µCOWSm to µCOWS 43

µCOWS

Syntax & structural congruence
µCOWS syntax and the set of laws defining its structural congruence
coincide with that of µCOWSm

Labelled transition relation α−→
Label α is now generated by the following grammar:

α ::= n� v̄ | n� w̄ | nσ ` v̄

where ` is a natural number

A gentle introduction to COWS Operational semantics of µCOWS 44

µCOWS

Syntax & structural congruence
µCOWS syntax and the set of laws defining its structural congruence
coincide with that of µCOWSm

Labelled transition relation α−→
Label α is now generated by the following grammar:

α ::= n� v̄ | n� w̄ | nσ ` v̄

where ` is a natural number

A gentle introduction to COWS Operational semantics of µCOWS 44

µCOWS: Parallel composition with priority

Communication takes place when two parallel services perform
matching receive and invoke activities

If more then one matching is possible the receive that needs fewer
substitutions is selected to progress

s1
n� w̄−−−−−→s′1 s2

n� v̄−−−−→s′2 M(w̄ , v̄)=σ noConf(s1 | s2,n, v̄ , |σ |)

s1 | s2
nσ |σ| v̄−−−−−−→ s′1 | s′2

Conflicting receives predicate
noConf(s,n, v̄ , `) checks existence of potential communication conflicts,
i.e. the ability of s of performing a receive activity matching v̄ over the
endpoint n that generates a substitution with fewer pairs than `

A gentle introduction to COWS Operational semantics of µCOWS 45

µCOWS: Parallel composition with priority

Communication takes place when two parallel services perform
matching receive and invoke activities

If more then one matching is possible the receive that needs fewer
substitutions is selected to progress

s1
n� w̄−−−−−→s′1 s2

n� v̄−−−−→s′2 M(w̄ , v̄)=σ noConf(s1 | s2,n, v̄ , |σ |)

s1 | s2
nσ |σ| v̄−−−−−−→ s′1 | s′2

Conflicting receives predicate
noConf(s,n, v̄ , `) checks existence of potential communication conflicts,
i.e. the ability of s of performing a receive activity matching v̄ over the
endpoint n that generates a substitution with fewer pairs than `

A gentle introduction to COWS Operational semantics of µCOWS 45

µCOWS: Parallel composition with priority

Communication takes place when two parallel services perform
matching receive and invoke activities

If more then one matching is possible the receive that needs fewer
substitutions is selected to progress

s1
n� w̄−−−−−→s′1 s2

n� v̄−−−−→s′2 M(w̄ , v̄)=σ noConf(s1 | s2,n, v̄ , |σ |)

s1 | s2
nσ |σ| v̄−−−−−−→ s′1 | s′2

Conflicting receives predicate
noConf(s,n, v̄ , `) checks existence of potential communication conflicts,
i.e. the ability of s of performing a receive activity matching v̄ over the
endpoint n that generates a substitution with fewer pairs than `

A gentle introduction to COWS Operational semantics of µCOWS 45

µCOWS: Parallel composition with priority

Communication takes place when two parallel services perform
matching receive and invoke activities

If more then one matching is possible the receive that needs fewer
substitutions is selected to progress

s1
n� w̄−−−−−→s′1 s2

n� v̄−−−−→s′2 M(w̄ , v̄)=σ noConf(s1 | s2,n, v̄ , |σ |)

s1 | s2
nσ |σ| v̄−−−−−−→ s′1 | s′2

Conflicting receives predicate (inductive definition, part 1/2)

noConf(kill(k),n, v̄ , `) = noConf(u!ε̄,n, v̄ , `) = true

noConf(
∑r

i=1 ni ?w̄i .si ,n, v̄ , `) =

{
false if ∃ i . ni = n ∧ |M(w̄i , v̄) |< `
true otherwise

A gentle introduction to COWS Operational semantics of µCOWS 45

µCOWS: Parallel composition with priority

Communication takes place when two parallel services perform
matching receive and invoke activities

If more then one matching is possible the receive that needs fewer
substitutions is selected to progress

s1
n� w̄−−−−−→s′1 s2

n� v̄−−−−→s′2 M(w̄ , v̄)=σ noConf(s1 | s2,n, v̄ , |σ |)

s1 | s2
nσ |σ| v̄−−−−−−→ s′1 | s′2

Conflicting receives predicate (inductive definition, part 2/2)
noConf(s | s′,n, v̄ , `) = noConf(s,n, v̄ , `) ∧ noConf(s′,n, v̄ , `)

noConf([u] s,n, v̄ , `) =

{
noConf(s,n, v̄ , `) if u /∈ n
true otherwise

noConf({|s|},n, v̄ , `) = noConf(∗ s,n, v̄ , `) = noConf(s,n, v̄ , `)

A gentle introduction to COWS Operational semantics of µCOWS 45

µCOWS: Parallel composition with priority

Execution of parallel services is interleaved, when no communication is
involved:

s1
α−−→ s′

1 α 6= nσ ` v̄

s1 | s2
α−−→ s′

1 | s2

In case of communications, the receive activity with greater priority
progresses:

s1
nσ ` v̄−−−−−→ s′

1 noConf(s2,n, v̄ , `)

s1 | s2
nσ ` v̄−−−−−→ s′

1 | s2

A gentle introduction to COWS Operational semantics of µCOWS 46

µCOWS: Parallel composition with priority

Execution of parallel services is interleaved, when no communication is
involved:

s1
α−−→ s′

1 α 6= nσ ` v̄

s1 | s2
α−−→ s′

1 | s2

In case of communications, the receive activity with greater priority
progresses:

s1
nσ ` v̄−−−−−→ s′

1 noConf(s2,n, v̄ , `)

s1 | s2
nσ ` v̄−−−−−→ s′

1 | s2

A gentle introduction to COWS Operational semantics of µCOWS 46

µCOWS: Parallel composition with priority

Execution of parallel services is interleaved, when no communication is
involved:

s1
α−−→ s′

1 α 6= nσ ` v̄

s1 | s2
α−−→ s′

1 | s2

In case of communications, the receive activity with greater priority
progresses:

s1
nσ ` v̄−−−−−→ s′

1 noConf(s2,n, v̄ , `)

s1 | s2
nσ ` v̄−−−−−→ s′

1 | s2

A gentle introduction to COWS Operational semantics of µCOWS 46

µCOWS operational semantics

Labelled transition rules

[[ε̄]] = v̄

n!ε̄
n� v̄−−−→ 0

1≤ j ≤ r∑r
i=1 ni ?w̄i .si

nj �w̄j−−−−−→ sj

s α−−→ s′ u /∈ u(α)

[u] s α−−→ [u] s′
s ≡ α−−→≡ s′

s α−−→ s′

s1
n� w̄−−−−−→s′1 s2

n� v̄−−−−→s′2 M(w̄ , v̄)=σ noConf(s1 | s2,n, v̄ , |σ |)

s1 | s2
nσ |σ| v̄−−−−−−→ s′1 | s′2

s1
α−−→ s′1 α 6= nσ ` v̄

s1 | s2
α−−→ s′1 | s2

s1
nσ ` v̄−−−−−→ s′1 noConf(s2,n, v̄ , `)

s1 | s2
nσ ` v̄−−−−−→ s′1 | s2

s
nσ]{x 7→v} ` v̄−−−−−−−−−−→ s′

[x] s nσ ` v̄−−−−−→ s′ ·{x 7→ v}

A gentle introduction to COWS Operational semantics of µCOWS 47

µCOWS: joint account service example

co-holder1 c1,1234,100€,
 infocharge1

...
bank

bank servicebank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *
bank

bankcharge2

xc2,xcc,
xamount

co-holder2 c2,1234,
 100€charge2

...
bank

∗ [xc1, xc2, xcc, xamount, xinfo] (bank • charge1?〈xc1, xcc, xamount, xinfo〉.s1
| bank • charge2?〈xc2, xcc, xamount〉.s2)

| (bank • charge1!〈c1,1234,100AC, info〉 | s′
1)

| (bank • charge2!〈c2,1234,100AC〉 | s′
2)

A gentle introduction to COWS Operational semantics of µCOWS 48

µCOWS: joint account service example

co-holder1 c1,1234,100€,
 infocharge1

...
bank

bank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *
bank

bankcharge2

xc2,xcc,
xamount

co-holder2 c2,1234,
 100€charge2

...
bank

∗ [xc1, xc2, xcc, xamount, xinfo] (bank • charge1?〈xc1, xcc, xamount, xinfo〉.s1
| bank • charge2?〈xc2, xcc, xamount〉.s2)

| (bank • charge1!〈c1,1234,100AC, info〉 | s′
1)

| (bank • charge2!〈c2,1234,100AC〉 | s′
2)

A gentle introduction to COWS Operational semantics of µCOWS 48

µCOWS: joint account service example

co-holder1 c1,1234,100€,
 infocharge1

...
bank

bank servicebank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *
bank

bankcharge2

xc2,xcc,
xamount

co-holder2 c2,1234,
 100€charge2

...
bank

∗ [xc1, xc2, xcc, xamount, xinfo] (bank • charge1?〈xc1, xcc, xamount, xinfo〉.s1
| bank • charge2?〈xc2, xcc, xamount〉.s2)

| (bank • charge1!〈c1,1234,100AC, info〉 | s′
1)

| (bank • charge2!〈c2,1234,100AC〉 | s′
2)

A gentle introduction to COWS Operational semantics of µCOWS 48

µCOWS: joint account service example

co-holder1 c1,1234,100€,
 infocharge1

...
bank

bank servicebank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *
bank

bankcharge2

xc2,xcc,
xamount

co-holder2 c2,1234,
 100€charge2

...

∗ [xc1, xc2, xcc, xamount, xinfo] (bank • charge1?〈xc1, xcc, xamount, xinfo〉.s1
| bank • charge2?〈xc2, xcc, xamount〉.s2)

| (bank • charge1!〈c1,1234,100AC, info〉 | s′
1)

| (bank • charge2!〈c2,1234,100AC〉 | s′
2)

A gentle introduction to COWS Operational semantics of µCOWS 48

µCOWS: joint account service example

co-holder1 c1,1234,100€,
 infocharge1

...
bank

bank servicebank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *
bank

bankcharge2

xc2,xcc,
xamount

co-holder2

... bankcharge1
. . .

xc1,1234,
100€,xinfo

new instance

∗ [xc1, xc2, xcc, xamount, xinfo] (bank • charge1?〈xc1, xcc, xamount, xinfo〉.s1
| bank • charge2?〈xc2, xcc, xamount〉.s2)

| (bank • charge1?〈xc1,1234,100AC, xinfo〉.s1 | s2) · {· · · 7→ · · · }
| (bank • charge1!〈c1,1234,100AC, info〉 | s′

1) | (s′
2)

A gentle introduction to COWS Operational semantics of µCOWS 48

µCOWS: joint account service example

co-holder1 c1,1234,100€,
 infocharge1

...
bank

bank servicebank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *
bank

bankcharge2

xc2,xcc,
xamount

co-holder2

... bankcharge1
. . .

xc1,1234,
100€,xinfo

conflicting
receives

request

∗ [xc1, xc2, xcc, xamount, xinfo] (bank • charge1?〈xc1, xcc, xamount, xinfo〉.s1
| bank • charge2?〈xc2, xcc, xamount〉.s2)

| (bank • charge1?〈xc1,1234,100AC, xinfo〉.s1 | s2) · {· · · 7→ · · · }
| (bank • charge1!〈c1,1234,100AC, info〉 | s′

1) | (s′
2)

A gentle introduction to COWS Operational semantics of µCOWS 48

µCOWS: joint account service example

co-holder1 c1,1234,100€,
 infocharge1

...
bank

bank servicebank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *
bank

bankcharge2

xc2,xcc,
xamount

co-holder2

... bankcharge1
. . .

xc1,1234,
100€,xinfo

conflicting
receives

request

Multiple start activities

The service can receive multiple messages in a statically unpredictable order s.t.
the first incoming message triggers creation of a service instance
subsequent messages are delivered to the created instance

A gentle introduction to COWS Operational semantics of µCOWS 48

µCOWS: joint account service example

co-holder1 c1,1234,100€,
 infocharge1

...
bank

bank servicebank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *
bank

bankcharge2

xc2,xcc,
xamount

co-holder2

... bankcharge1
. . .

xc1,1234,
100€,xinfo

enabled
communication

∗ [xc1, xc2, xcc, xamount, xinfo] (bank • charge1?〈xc1, xcc, xamount, xinfo〉.s1
| bank • charge2?〈xc2, xcc, xamount〉.s2)

| (bank • charge1?〈xc1,1234,100AC, xinfo〉.s1 | s2) · {· · · 7→ · · · }
| (bank • charge1!〈c1,1234,100AC, info〉 | s′

1) | (s′
2)

A gentle introduction to COWS Operational semantics of µCOWS 48

µCOWS: joint account service example

co-holder1 c1,1234,100€,
 infocharge1

...
bank

bank servicebank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *

bankcharge2

xc2,xcc,
xamount

co-holder2

... bankcharge1
. . .

xc1,1234,
100€,xinfo

∗ [xc1, xc2, xcc, xamount, xinfo] (bank • charge1?〈xc1, xcc, xamount, xinfo〉.s1
| bank • charge2?〈xc2, xcc, xamount〉.s2)

| (bank • charge1?〈xc1,1234,100AC, xinfo〉.s1 | s2) · {· · · 7→ · · · }
| (bank • charge1!〈c1,1234,100AC, info〉 | s′

1) | (s′
2)

A gentle introduction to COWS Operational semantics of µCOWS 48

µCOWS: joint account service example

co-holder1

...
bank

bank servicebank service

charge1

. . .

xc1,xcc,
xamount,

xinfo *

bankcharge2

xc2,xcc,
xamount

co-holder2

...
. . .

∗ [xc1, xc2, xcc, xamount, xinfo] (bank • charge1?〈xc1, xcc, xamount, xinfo〉.s1
| bank • charge2?〈xc2, xcc, xamount〉.s2)

| (s1 | s2) · {· · · 7→ · · · }
| (s′

1) | (s′
2)

A gentle introduction to COWS Operational semantics of µCOWS 48

Parallel with priority as a coordination mechanism

Default behaviour
Consider a service providing mathematical functionalities
e.g. sum of two integers between 0 and 5

∗ [x , y , z] (math • sum?〈x , y , z〉. x • resp!〈error〉
+ math • sum?〈x ,0,0〉. x • resp!〈0〉
+ math • sum?〈x ,0,1〉. x • resp!〈1〉
+ . . . + math • sum?〈x ,5,5〉. x • resp!〈10〉)

In case the two values are not admissible, i.e. they are not integers
between 0 and 5, the service replies with the string error

A gentle introduction to COWS Operational semantics of µCOWS 49

Parallel with priority as a coordination mechanism

‘Blind date’ session joining
Consider a service capable of arranging matches of 4-players online games

masterServ , ∗ [xgame, xplayer1, xplayer2 , xplayer3 , xplayer4]
master • join?〈xgame, xplayer1〉.
master • join?〈xgame, xplayer2〉.
master • join?〈xgame, xplayer3〉.
master • join?〈xgame, xplayer4〉.

[matchId] (xplayer1 • start!〈matchId〉
| xplayer2 • start!〈matchId〉
| xplayer3 • start!〈matchId〉
| xplayer4 • start!〈matchId〉)

Playeri , master • join!〈poker ,pi〉 | [xid] pi • start?〈xid 〉. 〈rest of Playeri〉

Playerj , master • join!〈bridge,pj〉 | [xid] pj • start?〈xid 〉. 〈rest of Playerj〉

It could be hard to render this behaviour with other process calculi

A gentle introduction to COWS Operational semantics of µCOWS 50

Parallel with priority as a coordination mechanism

‘Blind date’ session joining
Consider a service capable of arranging matches of 4-players online games

masterServ , ∗ [xgame, xplayer1, xplayer2 , xplayer3 , xplayer4]
master • join?〈xgame, xplayer1〉.
master • join?〈xgame, xplayer2〉.
master • join?〈xgame, xplayer3〉.
master • join?〈xgame, xplayer4〉.

[matchId] (xplayer1 • start!〈matchId〉
| xplayer2 • start!〈matchId〉
| xplayer3 • start!〈matchId〉
| xplayer4 • start!〈matchId〉)

Playeri , master • join!〈poker ,pi〉 | [xid] pi • start?〈xid 〉. 〈rest of Playeri〉

Playerj , master • join!〈bridge,pj〉 | [xid] pj • start?〈xid 〉. 〈rest of Playerj〉

It could be hard to render this behaviour with other process calculi

A gentle introduction to COWS Operational semantics of µCOWS 50

From µCOWS to COWS

µCOWS

A gentle introduction to COWS From µCOWS to COWS 51

From µCOWS to COWS

µCOWS

+
Termination activities

A gentle introduction to COWS From µCOWS to COWS 51

From µCOWS to COWS

µCOWS

+
Termination activities

=
COWS

A gentle introduction to COWS From µCOWS to COWS 51

COWS: why termination activities?

1 To handle faults and enable compensation

2 Termination activities can be used as orchestration mechanisms
I E.g. to model the asymmetric parallel composition of Orc (i.e. the

where construct, that prunes threads selectively)

A gentle introduction to COWS From µCOWS to COWS 52

Syntax of COWS
s ::= (services)

kill(k) (kill)
| u •u′!ε̄ (invoke)
|
∑r

i=0 gi .si (receive-guarded choice)
| s | s (parallel composition)
| {|s|} (protection)
| [e] s (delimitation)
| ∗ s (replication)

g ::= (guards)
p •o?w̄ (receive)

(notations)
k : (killer) labels
ε: expressions

x : variables
v : values

n,p,o: names
u: variables |names
w : variables |values
e: labels |variables |names

Killer labels cannot occur within expressions
⇒ they are not (communicable) values

Only one binding construct: [e] s binds e in the scope s
I free/bound elements (i.e. names/variables/labels) defined

accordingly

A gentle introduction to COWS Syntax of COWS 53

COWS operational semantics

Additional structural congruence laws
{|0|} ≡ 0 {| {|s|} |} ≡ {|s|} {|[e] s|} ≡ [e] {|s|}

s1 | [e] s2 ≡ [e] (s1 | s2) if e /∈ fe(s1)∪fk(s2)

I fe(s) denotes the set of elements occurring free in s
I fk(s) denotes the set of free killer labels in s
I thus, differently from names/variables, the scope of killer labels

cannot be extended

Labelled transition relation α−→
Label α is now generated by the following grammar:

α ::= n� v̄ | n� w̄ | nσ ` v̄ | k | †

A gentle introduction to COWS Operational semantics of COWS 54

COWS: Kill activity

Activity kill(k) forces termination of all unprotected parallel
activities inside an enclosing [k] , that stops the killing effect

kill(k)
k−−→ 0

s1
k−−→ s′

1

s1 | s2
k−−→ s′

1 | halt(s2)

s
k−−→ s′

[k] s
†−−→ [k] s′

A gentle introduction to COWS Operational semantics of COWS 55

COWS: Kill activity

Activity kill(k) forces termination of all unprotected parallel
activities inside an enclosing [k] , that stops the killing effect

kill(k)
k−−→ 0

s1
k−−→ s′

1

s1 | s2
k−−→ s′

1 | halt(s2)

s
k−−→ s′

[k] s
†−−→ [k] s′

Function halt(s)
returns the service obtained by only retaining the protected activities
inside s

halt(kill(k)) = halt(u!ε̄) = halt(
∑r

i=0 ni?w̄i .si) = 0

halt(s1 | s2) = halt(s1) | halt(s2) halt({|s|}) = {|s|}

halt([e] s) = [e] halt(s) halt(∗ s) = ∗ halt(s)

A gentle introduction to COWS Operational semantics of COWS 55

COWS: Kill activity

Activity kill(k) forces termination of all unprotected parallel
activities inside an enclosing [k] , that stops the killing effect

kill(k)
k−−→ 0

s1
k−−→ s′

1

s1 | s2
k−−→ s′

1 | halt(s2)

s
k−−→ s′

[k] s
†−−→ [k] s′

Kill activities are executed eagerly

s
k−−→ s′ k 6= e

[e] s
k−−→ [e] s′

s
†−−→ s′

[e] s
†−−→ [e] s′

s
α−−→ s′ e /∈ e(α) α 6= k , † noKill(s,e)

[e] s
α−−→ [e] s′

A gentle introduction to COWS Operational semantics of COWS 55

COWS: Kill activity

Activity kill(k) forces termination of all unprotected parallel
activities inside an enclosing [k] , that stops the killing effect

Kill activities are executed eagerly

s
k−−→ s′ k 6= e

[e] s
k−−→ [e] s′

s
†−−→ s′

[e] s
†−−→ [e] s′

s
α−−→ s′ e /∈ e(α) α 6= k , † noKill(s,e)

[e] s
α−−→ [e] s′

Predicate noKill(s,e) (part 1/2)
checks the ability of s of immediately performing a kill activity

noKill(s, e) = true if fk(e) = ∅ noKill(kill(k ′), k) = true if k 6= k ′

noKill(kill(k), k) = false noKill(u!ε̄, k) = noKill(
∑r

i=0 ni ?w̄i .si , k) = true

A gentle introduction to COWS Operational semantics of COWS 55

COWS: Kill activity

Activity kill(k) forces termination of all unprotected parallel
activities inside an enclosing [k] , that stops the killing effect

Kill activities are executed eagerly

s
k−−→ s′ k 6= e

[e] s
k−−→ [e] s′

s
†−−→ s′

[e] s
†−−→ [e] s′

s
α−−→ s′ e /∈ e(α) α 6= k , † noKill(s,e)

[e] s
α−−→ [e] s′

Predicate noKill(s,e) (part 2/2)
checks the ability of s of immediately performing a kill activity
noKill(s | s′, k) = noKill(s, k) ∧ noKill(s′, k) noKill([e] s, k) = noKill(s, k) if e 6= k

noKill([k] s, k) = true noKill({|s|}, k) = noKill(∗ s, k) = noKill(s, k)

A gentle introduction to COWS Operational semantics of COWS 55

COWS: Kill activity

Activity kill(k) forces termination of all unprotected parallel
activities inside an enclosing [k] , that stops the killing effect

Kill activities are executed eagerly

{| · |} protects activities from the effect of a forced termination

s α−→ s′

{|s|} α−→ {|s′|}

A gentle introduction to COWS Operational semantics of COWS 55

COWS operational semantics: labelled transition rules
[[ε̄]] = v̄

n!ε̄
n� v̄−−−→ 0

1≤ j ≤ r∑r
i=1 ni ?w̄i .si

nj �w̄j−−−−−→ sj

s ≡ α−−→≡ s′

s α−−→ s′

s1
n� w̄−−−−→s′1 s2

n� v̄−−−−→s′2 M(w̄ , v̄)=σ noConf(s1 | s2,n, v̄ , |σ |)

s1 | s2
nσ |σ| v̄−−−−−−→ s′1 | s′2

s
nσ]{x 7→v} ` v̄−−−−−−−−−−→ s′

[x] s nσ ` v̄−−−−−→ s′ ·{x 7→ v}

s1
nσ ` v̄−−−−−→ s′1 noConf(s2,n, v̄ , `)

s1 | s2
nσ ` v̄−−−−−→ s′1 | s2

kill(k)
k−−→ 0

s α−−→ s′

{|s|} α−−→ {|s′|}

s1
α−−→ s′1 α 6= k ,nσ ` v̄

s1 | s2
α−−→ s′1 | s2

s k−−→ s′

[k] s †−−→ [k] s′
s k−−→ s′ k 6= e

[e] s k−−→ [e] s′
s1

k−−→ s′1

s1 | s2
k−−→ s′1 | halt(s2)

s †−−→ s′

[e] s †−−→ [e] s′
s α−−→ s′ e /∈ e(α) α 6= k , † noKill(s, e)

[e] s α−−→ [e] s′

A gentle introduction to COWS Operational semantics of COWS 56

COWS: multi rating bank service example

bank

bankInterfacebankInterface
bank

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

*
* creditRating1creditRating1

* creditRating2creditRating2

c1

check1/2

ok1
fail1

bank

resp

1234
1234,100€

“ok”/ “fail”

1234

ok2bank 1234
1234

fail2

check1

bankcheck2

A gentle introduction to COWS Operational semantics of COWS 57

COWS: multi rating bank service example

bank

bankInterfacebankInterface

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

*
* creditRating1creditRating1

* creditRating2creditRating2

c1

ok1
fail1

bank

resp

1234
1234,100€

“ok”/ “fail”

1234

ok2
fail2

bank 1234
1234

check1/2

bankcheck1

bankcheck2

A gentle introduction to COWS Operational semantics of COWS 57

COWS: multi rating bank service example

bank

bankInterfacebankInterface

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

*
* creditRating1creditRating1

* creditRating2creditRating2

c1

ok1
fail1

bank

resp

1234

“ok”/ “fail”

1234

ok2
fail2

bank 1234
1234

ok1
fail1bank

1234
1234

ok2
fail2bank

1234
1234

bankcheck1

bankcheck2

A gentle introduction to COWS Operational semantics of COWS 57

COWS: multi rating bank service example

bank

bankInterfacebankInterface

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

*
* creditRating1creditRating1

* creditRating2creditRating2

c1

ok1
fail1

bank

resp

1234

“ok”/ “fail”

1234

ok2
fail2

bank 1234
1234

ok1
bank

1234

ok2
fail2bank

1234
1234

bankcheck1

bankcheck2

A gentle introduction to COWS Operational semantics of COWS 57

COWS: multi rating bank service example

bank

bankInterfacebankInterface

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

*
* creditRating1creditRating1

* creditRating2creditRating2

c1

ok1
fail1

bank

resp

1234

“ok”/ “fail”

1234

ok2
fail2

bank 1234
1234

ok11234

ok2
fail2bank

1234
1234

bankcheck1

bankcheck2

A gentle introduction to COWS Operational semantics of COWS 57

COWS: multi rating bank service example

bank

bankInterfacebankInterface

check,ok,failbank servicebank service

charge

xc,xcc,
xamount

*
* creditRating1creditRating1

* creditRating2creditRating2

c1

ok1
fail1

bank

resp

1234

“ok”/ “fail”

1234

ok2
fail2

bank 1234
1234

ok11234

ok2
fail2bank

1234
1234

XX

bankcheck1

bankcheck2

A gentle introduction to COWS Operational semantics of COWS 57

COWS: multi rating bank service example

[check1, check2,ok1,ok2, fail1, fail2]
(∗bankInterface | ∗ creditRating1 | ∗ creditRating2)

bankInterface ,
[xc, xcc, xamount]
bank • charge?〈xc, xcc, xamount〉.
(bank • check1!〈xcc, xamount〉 | bank • check2!〈xcc, xamount〉
| [k] (bank •ok1?〈xcc〉. (kill(k) | {|xc • resp!〈“ok”〉|})

+ bank • fail1?〈xcc〉. s1
| bank •ok2?〈xcc〉. (kill(k) | {|xc • resp!〈“ok”〉|})

+ bank • fail2?〈xcc〉. s2))

A gentle introduction to COWS Operational semantics of COWS 57

COWS: peculiar examples

Protected kill activity

Execution of a kill activity within a protection block

[k] ({|s1 | {|s2|} | kill(k)|} | s3) | s4
†−−→ [k] {|s2|} | s4

For simplicity, assume that halt(s1) = halt(s3) = 0

kill(k) terminates all parallel services inside delimitation [k] (i.e. s1 and
s3), except those that are protected at the same nesting level of the kill
activity (i.e. s2)

A gentle introduction to COWS Operational semantics of COWS 58

COWS: peculiar examples

Protected kill activity

Execution of a kill activity within a protection block

[k] ({|s1 | {|s2|} | kill(k)|} | s3) | s4
†−−→ [k] {|s2|} | s4

For simplicity, assume that halt(s1) = halt(s3) = 0

kill(k) terminates all parallel services inside delimitation [k] (i.e. s1 and
s3), except those that are protected at the same nesting level of the kill
activity (i.e. s2)

A gentle introduction to COWS Operational semantics of COWS 58

COWS: peculiar examples

Protected kill activity

Execution of a kill activity within a protection block

[k] ({|s1 | {|s2|} | kill(k)|} | s3) | s4
†−−→ [k] {|s2|} | s4

For simplicity, assume that halt(s1) = halt(s3) = 0

kill(k) terminates all parallel services inside delimitation [k] (i.e. s1 and
s3), except those that are protected at the same nesting level of the kill
activity (i.e. s2)

A gentle introduction to COWS Operational semantics of COWS 58

COWS: peculiar examples

Interplay between communication and kill activity

p •o!〈n〉 | [k] ([x] p •o?〈x〉.s | kill(k))
†−−→ p •o!〈n〉 | [k] [x] 0

Kill activities can break communication

This is the only possible evolution (kills are executed eagerly)

Communication can be guaranteed by protecting the receive

p •o!〈n〉 | [k] ([x] {|p •o?〈x〉.s|} | kill(k))
†−−→

p •o!〈n〉 | [k] ([x] {|p •o?〈x〉.s|}) p •o ∅ 1 〈n〉−−−−−−−−→ [k] {|s · {x 7→ n}|}

A gentle introduction to COWS Operational semantics of COWS 59

COWS: peculiar examples

Interplay between communication and kill activity

p •o!〈n〉 | [k] ([x] p •o?〈x〉.s | kill(k))
†−−→ p •o!〈n〉 | [k] [x] 0

Kill activities can break communication

This is the only possible evolution (kills are executed eagerly)

Communication can be guaranteed by protecting the receive

p •o!〈n〉 | [k] ([x] {|p •o?〈x〉.s|} | kill(k))
†−−→

p •o!〈n〉 | [k] ([x] {|p •o?〈x〉.s|}) p •o ∅ 1 〈n〉−−−−−−−−→ [k] {|s · {x 7→ n}|}

A gentle introduction to COWS Operational semantics of COWS 59

COWS expressiveness

COWS expressiveness 60

Considerations on COWS expressiveness

Encoding other calculi
I π-calculus, Localized π-calculus (Lπ), . . .
I SCC (Session Centered Calculus)
I Orc
I WS-CALCULUS
I Blite (a lightweight version of WS-BPEL)

COWS (like other calculi equipped with priority) is not encodable
into mainstream calculi (e.g. CCS and π-calculus) [EXPRESS’10]

Modelling imperative and orchestration constructs
I Assignment, conditional choice, sequential composition,. . .
I WS-BPEL flow graphs, fault and compensation handlers
I QoS requirement specifications and SLA negotiations [WWV’07]
I Timed orchestration constructs [ICTAC’07]

COWS expressiveness 61

Considerations on COWS expressiveness

Encoding other calculi
I π-calculus, Localized π-calculus (Lπ), . . .
I SCC (Session Centered Calculus)
I Orc
I WS-CALCULUS
I Blite (a lightweight version of WS-BPEL)

COWS (like other calculi equipped with priority) is not encodable
into mainstream calculi (e.g. CCS and π-calculus) [EXPRESS’10]

Modelling imperative and orchestration constructs
I Assignment, conditional choice, sequential composition,. . .
I WS-BPEL flow graphs, fault and compensation handlers
I QoS requirement specifications and SLA negotiations [WWV’07]
I Timed orchestration constructs [ICTAC’07]

COWS expressiveness 61

Considerations on COWS expressiveness

Encoding other calculi
I π-calculus, Localized π-calculus (Lπ), . . .
I SCC (Session Centered Calculus)
I Orc
I WS-CALCULUS
I Blite (a lightweight version of WS-BPEL)

COWS (like other calculi equipped with priority) is not encodable
into mainstream calculi (e.g. CCS and π-calculus) [EXPRESS’10]

Modelling imperative and orchestration constructs
I Assignment, conditional choice, sequential composition,. . .
I WS-BPEL flow graphs, fault and compensation handlers
I QoS requirement specifications and SLA negotiations [WWV’07]
I Timed orchestration constructs [ICTAC’07]

COWS expressiveness 61

Considerations on COWS expressiveness

Encoding other calculi
I π-calculus, Localized π-calculus (Lπ), . . .
I SCC (Session Centered Calculus)
I Orc
I WS-CALCULUS
I Blite (a lightweight version of WS-BPEL)

COWS (like other calculi equipped with priority) is not encodable
into mainstream calculi (e.g. CCS and π-calculus) [EXPRESS’10]

Modelling imperative and orchestration constructs
I Assignment, conditional choice, sequential composition,. . .
I WS-BPEL flow graphs, fault and compensation handlers
I QoS requirement specifications and SLA negotiations [WWV’07]
I Timed orchestration constructs [ICTAC’07]

COWS expressiveness 61

COWS: fault and compensation handling

Scope

COWS expressiveness Fault and compensation handling 62

COWS: fault and compensation handling

Syntax for compensation
s ::= . . . (services)
| throw(φ) (fault generator)
| compensate(i) (compensate)
| [s : catch(φ1){s1} : . . . : catch(φn){sn} : sc]i (scope)

throw(φ): rises a fault signal φ that triggers execution of s
if a construct catch(φ){s} exists within the same scope

compensate(i): invokes a compensation handler of an inner scope i
that has already completed normally (i.e. without faulting)

[s : catch(φ1){s1} : . . . : catch(φn){sn} : sc]i : is uniquely identified by i
and groups together a service s (the normal behaviour), an optional list
of fault handlers, and a compensation handler sc

COWS expressiveness Fault and compensation handling 63

COWS: fault and compensation handling

Encoding
〈〈[s : catch(φ1){s1} : . . . : catch(φn){sn} : sc]i〉〉k =

[φ1, . . . , φn] (〈〈catch(φ1){s1}〉〉k | . . . | 〈〈catch(φn){sn}〉〉k
| [ki] 〈〈s〉〉ki ; (xdone •odone!〈〉 | [k ′] {|undo?〈i〉.〈〈sc〉〉k ′ |}))

〈〈catch(φ){s}〉〉k = throw?〈φ〉.[k ′] 〈〈s〉〉k ′

〈〈compensate(i)〉〉k = undo!〈i〉 | xdone •odone!〈〉

〈〈throw(φ)〉〉k = {|throw!〈φ〉|} | kill(k)

COWS expressiveness Fault and compensation handling 64

Analysis techniques

Analysis techniques 65

Analysis techniques for COWS specifications

1 A bisimulation-based observational semantics [ICALP’09]

2 A type system for checking confidentiality properties [FSEN’07]

3 A logical verification methodology [FASE’08]

Analysis techniques 66

Analysis techniques: an observational semantics

Analysis techniques A bisimulation-based observational semantics 67

Behavioural equivalences: key concepts
An important ingredient of a process calculus is a notion of
behavioural equivalences between its terms

Behavioural equivalences, and the related proof techniques, are a
tool providing a means to establishing formal correspondences
between terms of a process calculus

Syntactically different terms may behave the same way,
hence they ought to be considered behaviourally equivalent

Behavioural equivalences can take into account diverse
observable properties of terms (name mobility, asynchrony, . . .)

I Several different classes of behavioural equivalences have been
introduced, each one being characterised by a specific notion of
observable behaviour

I The semantics induced by such equivalences are indeed called
observational semantics

Analysis techniques A bisimulation-based observational semantics 68

Behavioural equivalences: key concepts
An important ingredient of a process calculus is a notion of
behavioural equivalences between its terms

Behavioural equivalences, and the related proof techniques, are a
tool providing a means to establishing formal correspondences
between terms of a process calculus

Syntactically different terms may behave the same way,
hence they ought to be considered behaviourally equivalent

Behavioural equivalences can take into account diverse
observable properties of terms (name mobility, asynchrony, . . .)

I Several different classes of behavioural equivalences have been
introduced, each one being characterised by a specific notion of
observable behaviour

I The semantics induced by such equivalences are indeed called
observational semantics

Analysis techniques A bisimulation-based observational semantics 68

Behavioural equivalences: key concepts
An important ingredient of a process calculus is a notion of
behavioural equivalences between its terms

Behavioural equivalences, and the related proof techniques, are a
tool providing a means to establishing formal correspondences
between terms of a process calculus

Syntactically different terms may behave the same way,
hence they ought to be considered behaviourally equivalent

Behavioural equivalences can take into account diverse
observable properties of terms (name mobility, asynchrony, . . .)

I Several different classes of behavioural equivalences have been
introduced, each one being characterised by a specific notion of
observable behaviour

I The semantics induced by such equivalences are indeed called
observational semantics

Analysis techniques A bisimulation-based observational semantics 68

Behavioural equivalences: key concepts

Powerful and widespread used techniques are based on the
notion of bisimulation

Intuitively, a bisimulation is a relation that permits associating two
terms if one simulates the behaviour (i.e. the actions that can be
performed) of the other and vice-versa

In doing this, the behaviour of intermediate states that the terms
traverse as they evolve have taken into account

I The action capabilities of the intermediate states does matter:
e.g. to observe different deadlock behaviours

Analysis techniques A bisimulation-based observational semantics 69

An observational semantics for COWS

An observational semantics permits checking interchangeability of
services and conformance against service specifications

Analysis techniques A bisimulation-based observational semantics 70

An observational semantics for COWS

An observational semantics permits checking interchangeability of
services and conformance against service specifications

bank

bankInterfacebankInterface

check

ok
fail

bank

bankcheck

ok
fail

check,ok,failbank servicebank service

charge

“ok”/ “fail” respxc

xc,xcc,
xamount

* * creditRatingcreditRating

Analysis techniques A bisimulation-based observational semantics 70

An observational semantics for COWS

An observational semantics permits checking interchangeability of
services and conformance against service specifications

bank

bankInterfacebankInterface

check

ok
fail

bank

bankcheck

ok
fail

check,ok,failbank servicebank service

charge

“ok”/ “fail” respxc

xc,xcc,
xamount

* * creditRatingcreditRating

bankcheck

ok
fail

* creditRatingcreditRating

Analysis techniques A bisimulation-based observational semantics 70

An observational semantics for COWS

An observational semantics permits checking interchangeability of
services and conformance against service specifications

bank

bankInterface

check

ok
fail

bank

charge

“ok”/ “fail” respxc

*
check,ok,failbank service

xc,xcc,
xamount bankcheck

ok
fail

* creditRatingcreditRating

bankcheck

ok
fail

* creditRatingcreditRating

≈

Analysis techniques A bisimulation-based observational semantics 70

An observational semantics for COWS

An observational semantics permits checking interchangeability of
services and conformance against service specifications

bank

bankInterfacebankInterface

check

ok
fail

bank

bankcheck

ok
fail

check,ok,failbank servicebank service

charge

“ok”/ “fail” respxc

xc,xcc,
xamount

* * creditRatingcreditRating

bankcheck

ok
fail

* creditRatingcreditRating

Analysis techniques A bisimulation-based observational semantics 70

An observational semantics for COWS

An observational semantics permits checking interchangeability of
services and conformance against service specifications

bank

bankInterfacebankInterface

check

ok
fail

bank

bankcheck

ok
fail

check,ok,failbank servicebank service

charge

“ok”/ “fail” respxc

xc,xcc,
xamount

* * creditRatingcreditRating

Analysis techniques A bisimulation-based observational semantics 70

An observational semantics for COWS

An observational semantics permits checking interchangeability of
services and conformance against service specifications

high-level spec. low-level spec.

Analysis techniques A bisimulation-based observational semantics 70

An observational semantics for COWS

An observational semantics permits checking interchangeability of
services and conformance against service specifications

high-level spec. low-level spec.

Analysis techniques A bisimulation-based observational semantics 70

An observational semantics for COWS

An observational semantics permits checking interchangeability of
services and conformance against service specifications

We have defined:
I natural notions of strong and weak open barbed bisimilarities

I manageable characterisations in terms of labelled bisimilarities

These semantics show that:
I COWS’s priority mechanisms partially recover the capability to

observe receive actions

I primitives for termination impose specific conditions on the
bisimilarities

Analysis techniques A bisimulation-based observational semantics 70

A natural notion of bisimulation
Observable (barb)

Predicate s ↓n holds true if there exist s′, n̄ and v̄ s.t. s
n� [n̄] v̄−−−−−−→ s′,

i.e. only the output capabilities are considered as observable

E.g. [x̄] (n?x̄ | n!v̄) ↓n, while [x̄] (n?x̄) 6 ↓n

Barbed bisimilarity '
is the largest symmetric, barb preserving, computation and context
closed relation over COWS terms

Barbed bisimilarity suffers from universal quantification over all
possible language contexts

I this makes the reasoning on terms very hard

We have provided a purely co-inductive notion of bisimulation
I only requires considering transitions of the labelled transition

system defining the semantics of the terms under analysis

Analysis techniques A bisimulation-based observational semantics 71

A natural notion of bisimulation
Observable (barb)

Predicate s ↓n holds true if there exist s′, n̄ and v̄ s.t. s
n� [n̄] v̄−−−−−−→ s′,

i.e. only the output capabilities are considered as observable

E.g. [x̄] (n?x̄ | n!v̄) ↓n, while [x̄] (n?x̄) 6 ↓n

Barbed bisimilarity '
is the largest symmetric, barb preserving, computation and context
closed relation over COWS terms

Barbed bisimilarity suffers from universal quantification over all
possible language contexts

I this makes the reasoning on terms very hard

We have provided a purely co-inductive notion of bisimulation
I only requires considering transitions of the labelled transition

system defining the semantics of the terms under analysis

Analysis techniques A bisimulation-based observational semantics 71

A natural notion of bisimulation
Observable (barb)

Predicate s ↓n holds true if there exist s′, n̄ and v̄ s.t. s
n� [n̄] v̄−−−−−−→ s′,

i.e. only the output capabilities are considered as observable

E.g. [x̄] (n?x̄ | n!v̄) ↓n, while [x̄] (n?x̄) 6 ↓n

Barbed bisimilarity '
is the largest symmetric, barb preserving, computation and context
closed relation over COWS terms

Barbed bisimilarity suffers from universal quantification over all
possible language contexts

I this makes the reasoning on terms very hard

We have provided a purely co-inductive notion of bisimulation
I only requires considering transitions of the labelled transition

system defining the semantics of the terms under analysis

Analysis techniques A bisimulation-based observational semantics 71

A natural notion of bisimulation
Observable (barb)

Predicate s ↓n holds true if there exist s′, n̄ and v̄ s.t. s
n� [n̄] v̄−−−−−−→ s′,

i.e. only the output capabilities are considered as observable

E.g. [x̄] (n?x̄ | n!v̄) ↓n, while [x̄] (n?x̄) 6 ↓n

Barbed bisimilarity '
is the largest symmetric, barb preserving, computation and context
closed relation over COWS terms

Barbed bisimilarity suffers from universal quantification over all
possible language contexts

I this makes the reasoning on terms very hard

We have provided a purely co-inductive notion of bisimulation
I only requires considering transitions of the labelled transition

system defining the semantics of the terms under analysis

Analysis techniques A bisimulation-based observational semantics 71

A co-inductive notion of bisimulation
Labelled bisimilarity ∼
A names-indexed family of symmetric binary relations {RN }N is a labelled

bisimulation if s1RN s2 then halt(s1)RN halt(s2) and if s1
α−−→ s′1, where bu(α) are

fresh, then:
1 if α = n� [x̄] w̄ then one of the following holds:

(a) ∀ v̄ s.t. M(x̄ , v̄) = σ and noc(s2,n, w̄ ·σ, | x̄ |) :

∃ s′2 : s2
n�[x̄] w̄−−−−−−→ s′2 and s′1 ·σRN s′2 ·σ

(b) | x̄ |=| w̄ | and ∀ v̄ s.t. M(x̄ , v̄) = σ and noc(s2,n, w̄ ·σ, | x̄ |) :

∃ s′2 : s2
∅−−→ s′2 and s′1 · σRN (s′2 | n!v̄) or s′1 · σRN (s′2 | {|n!v̄ |})

2 if α = n ∅ ` v̄ where ` =| v̄ | then one of the following holds:

(a) ∃ s′2 : s2
n ∅ ` v̄−−−−−→ s′2 and s′1RN s′2 (b) ∃ s′2 : s2

∅−−→ s′2 and s′1RN s′2
3 if α = n� [n̄] v̄ where n /∈ N then ∃ s′2 : s2

n�[n̄] v̄−−−−−→ s′2 and s′1RN∪ n̄ s′2
4 if α = ∅, α = † or α = n ∅ ` v̄ , where ` 6=| v̄ |, then ∃ s′2 : s2

α−−→ s′2 and s′1RN s′2

Two closed terms s1 and s2 are N -bisimilar, written s1 ∼N s2, if s1RN s2 for some RN
in a labelled bisimulation. They are labelled bisimilar, written s1 ∼ s2, if they are
∅-bisimilar. ∼N is called N -bisimilarity, while ∼ is called labelled bisimilarity

Analysis techniques A bisimulation-based observational semantics 72

A co-inductive notion of bisimulation
Labelled bisimilarity ∼
A names-indexed family of symmetric binary relations {RN }N is a labelled

bisimulation if s1RN s2 then halt(s1)RN halt(s2) and if s1
α−−→ s′1, where bu(α) are

fresh, then:
1 if s1 performs a receive then one of the following holds:

(a) s2 performs the same receive and the continuations stand in the same
relation for any matching tuple of values that can be effectively received

(b) if the argument of the receive contains only variables or is the empty tuple,
s2 performs an internal action leading to a term that, composed with the
consumed invoke, stands in the same relation

2 if α = n ∅ ` v̄ where ` =| v̄ | then one of the following holds:

(a) ∃ s′2 : s2
n ∅ ` v̄−−−−−→ s′2 and s′1RN s′2 (b) ∃ s′2 : s2

∅−−→ s′2 and s′1RN s′2
3 if α = n� [n̄] v̄ where n /∈ N then ∃ s′2 : s2

n�[n̄] v̄−−−−−→ s′2 and s′1RN∪ n̄ s′2
4 if α = ∅, α = † or α = n ∅ ` v̄ , where ` 6=| v̄ |, then ∃ s′2 : s2

α−−→ s′2 and s′1RN s′2

Two closed terms s1 and s2 are N -bisimilar, written s1 ∼N s2, if s1RN s2 for some RN
in a labelled bisimulation. They are labelled bisimilar, written s1 ∼ s2, if they are
∅-bisimilar. ∼N is called N -bisimilarity, while ∼ is called labelled bisimilarity

Analysis techniques A bisimulation-based observational semantics 72

A co-inductive notion of bisimulation
Labelled bisimilarity ∼
A names-indexed family of symmetric binary relations {RN }N is a labelled

bisimulation if s1RN s2 then halt(s1)RN halt(s2) and if s1
α−−→ s′1, where bu(α) are

fresh, then:
1 if s1 performs a receive then one of the following holds:

(a) s2 performs the same receive and the continuations stand in the same
relation for any matching tuple of values that can be effectively received

(b) if the argument of the receive contains only variables or is the empty tuple,
s2 performs an internal action leading to a term that, composed with the
consumed invoke, stands in the same relation

2 if s1 performs a communication involving an unobservable receive then:
s2 performs (a) the same action or (b) an internal action and . . .

3 if α = n� [n̄] v̄ where n /∈ N then ∃ s′2 : s2
n�[n̄] v̄−−−−−→ s′2 and s′1RN∪ n̄ s′2

4 if α = ∅, α = † or α = n ∅ ` v̄ , where ` 6=| v̄ |, then ∃ s′2 : s2
α−−→ s′2 and s′1RN s′2

Two closed terms s1 and s2 are N -bisimilar, written s1 ∼N s2, if s1RN s2 for some RN
in a labelled bisimulation. They are labelled bisimilar, written s1 ∼ s2, if they are
∅-bisimilar. ∼N is called N -bisimilarity, while ∼ is called labelled bisimilarity

Analysis techniques A bisimulation-based observational semantics 72

A co-inductive notion of bisimulation
Labelled bisimilarity ∼
A names-indexed family of symmetric binary relations {RN }N is a labelled

bisimulation if s1RN s2 then halt(s1)RN halt(s2) and if s1
α−−→ s′1, where bu(α) are

fresh, then:
1 if s1 performs a receive then one of the following holds:

(a) s2 performs the same receive and the continuations stand in the same
relation for any matching tuple of values that can be effectively received

(b) if the argument of the receive contains only variables or is the empty tuple,
s2 performs an internal action leading to a term that, composed with the
consumed invoke, stands in the same relation

2 if s1 performs a communication involving an unobservable receive then:
s2 performs (a) the same action or (b) an internal action and . . .

3 if s1 performs an invoke then s2 performs the same invoke and . . .

4 if α = ∅, α = † or α = n ∅ ` v̄ , where ` 6=| v̄ |, then ∃ s′2 : s2
α−−→ s′2 and s′1RN s′2

Two closed terms s1 and s2 are N -bisimilar, written s1 ∼N s2, if s1RN s2 for some RN
in a labelled bisimulation. They are labelled bisimilar, written s1 ∼ s2, if they are
∅-bisimilar. ∼N is called N -bisimilarity, while ∼ is called labelled bisimilarity

Analysis techniques A bisimulation-based observational semantics 72

A co-inductive notion of bisimulation
Labelled bisimilarity ∼
A names-indexed family of symmetric binary relations {RN }N is a labelled

bisimulation if s1RN s2 then halt(s1)RN halt(s2) and if s1
α−−→ s′1, where bu(α) are

fresh, then:
1 if s1 performs a receive then one of the following holds:

(a) s2 performs the same receive and the continuations stand in the same
relation for any matching tuple of values that can be effectively received

(b) if the argument of the receive contains only variables or is the empty tuple,
s2 performs an internal action leading to a term that, composed with the
consumed invoke, stands in the same relation

2 if s1 performs a communication involving an unobservable receive then:
s2 performs (a) the same action or (b) an internal action and . . .

3 if s1 performs an invoke then s2 performs the same invoke and . . .
4 if s1 performs either an internal action, a kill or a communication involving an

observable receive then s2 performs the same action and . . .

Two closed terms s1 and s2 are N -bisimilar, written s1 ∼N s2, if s1RN s2 for some RN
in a labelled bisimulation. They are labelled bisimilar, written s1 ∼ s2, if they are
∅-bisimilar. ∼N is called N -bisimilarity, while ∼ is called labelled bisimilarity

Analysis techniques A bisimulation-based observational semantics 72

Observational semantics at work: bank service
We can compare the high-level specification

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount * ∗ [xc, xcc, xamount]

bank • charge?〈xc, xcc, xamount〉.
xc • resp!〈chk(xcc , xamount)〉

Analysis techniques A bisimulation-based observational semantics 73

Observational semantics at work: bank service
We can compare the high-level specification

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount * ∗ [xc, xcc, xamount]

bank • charge?〈xc, xcc, xamount〉.
xc • resp!〈chk(xcc , xamount)〉

with the low-level specification

bank

bankInterfacebankInterface

check

ok
failbank

bankcheck

ok
fail

check,ok,failbank servicebank service

charge

“ok”/ “fail” respxc

xc,xcc,
xamount

* * creditRatingcreditRating

[check,ok, fail]
(∗bankInterface | ∗ creditRating)

bankInterface ,
[xc, xcc, xamount]
bank• charge?〈xc, xcc, xamount〉.
(bank• check!〈xcc, xamount〉
| bank• ok?〈xcc〉. xc • resp!〈“ok”〉

+ bank• fail?〈xcc〉. xc • resp!〈“fail”〉)

Analysis techniques A bisimulation-based observational semantics 73

Observational semantics at work: bank service
We can compare the high-level specification

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount * ∗ [xc, xcc, xamount]

bank • charge?〈xc, xcc, xamount〉.
xc • resp!〈chk(xcc , xamount)〉

with the low-level specification

bank

bankInterfacebankInterface

check

ok
failbank

bankcheck

ok
fail

check,ok,failbank servicebank service

charge

“ok”/ “fail” respxc

xc,xcc,
xamount

* * creditRatingcreditRating

[check,ok, fail]
(∗bankInterface | ∗ creditRating)

creditRating ,
[xcc, xa]
bank• check?〈xcc, xa〉.
[p, o] (p• o!〈chk(xcc , xamount)〉
| p• o?〈“ok”〉. bank• ok!〈xcc〉

+p• o?〈“fail”〉. bank• fail!〈xcc〉)

Analysis techniques A bisimulation-based observational semantics 73

Observational semantics at work: bank service

bank

bank servicebank service

“ok”/ “fail”

charge

respxc

xc,xcc,
xamount *

≈

bank

bankInterfacebankInterface

check

ok
failbank

bankcheck

ok
fail

check,ok,failbank servicebank service

charge

“ok”/ “fail” respxc

xc,xcc,
xamount

* * creditRatingcreditRating

Analysis techniques A bisimulation-based observational semantics 74

Examples: observation of receive actions

Asynchronous π-calculus: the input absorption law

τ + a(b). āb ∼ τ

COWS without priority: the receive absorption law

[x] (∅+ p •o?〈x , v〉.p •o!〈x , v〉) ∼ ∅

where ∅ , [p′,o′] (p′ •o′!〈〉 | p′ •o′?〈〉)

COWS: the receive absorption law

[x] (∅+ p •o?〈x , v〉.p •o!〈x , v〉) 6∼ ∅

since C , [y , z] p •o?〈y , z〉.p′′ •o′′!〈〉 | p •o!〈v ′, v〉 | [[·]] can distinguish them

However
[x , y] (∅+ p •o?〈x , y〉.p •o!〈x , y〉) ∼ ∅

Analysis techniques A bisimulation-based observational semantics 75

Examples: observation of receive actions

Asynchronous π-calculus: the input absorption law

τ + a(b). āb ∼ τ

COWS without priority: the receive absorption law

[x] (∅+ p •o?〈x , v〉.p •o!〈x , v〉) ∼ ∅

where ∅ , [p′,o′] (p′ •o′!〈〉 | p′ •o′?〈〉)

COWS: the receive absorption law

[x] (∅+ p •o?〈x , v〉.p •o!〈x , v〉) 6∼ ∅

since C , [y , z] p •o?〈y , z〉.p′′ •o′′!〈〉 | p •o!〈v ′, v〉 | [[·]] can distinguish them

However
[x , y] (∅+ p •o?〈x , y〉.p •o!〈x , y〉) ∼ ∅

Analysis techniques A bisimulation-based observational semantics 75

Examples: observation of receive actions

Asynchronous π-calculus: the input absorption law

τ + a(b). āb ∼ τ

COWS without priority: the receive absorption law

[x] (∅+ p •o?〈x , v〉.p •o!〈x , v〉) ∼ ∅

where ∅ , [p′,o′] (p′ •o′!〈〉 | p′ •o′?〈〉)

COWS: the receive absorption law

[x] (∅+ p •o?〈x , v〉.p •o!〈x , v〉) 6∼ ∅

since C , [y , z] p •o?〈y , z〉.p′′ •o′′!〈〉 | p •o!〈v ′, v〉 | [[·]] can distinguish them

However
[x , y] (∅+ p •o?〈x , y〉.p •o!〈x , y〉) ∼ ∅

Analysis techniques A bisimulation-based observational semantics 75

Examples: observation of receive actions

Asynchronous π-calculus: the input absorption law

τ + a(b). āb ∼ τ

COWS without priority: the receive absorption law

[x] (∅+ p •o?〈x , v〉.p •o!〈x , v〉) ∼ ∅

where ∅ , [p′,o′] (p′ •o′!〈〉 | p′ •o′?〈〉)

COWS: the receive absorption law

[x] (∅+ p •o?〈x , v〉.p •o!〈x , v〉) 6∼ ∅

since C , [y , z] p •o?〈y , z〉.p′′ •o′′!〈〉 | p •o!〈v ′, v〉 | [[·]] can distinguish them

However
[x , y] (∅+ p •o?〈x , y〉.p •o!〈x , y〉) ∼ ∅

Analysis techniques A bisimulation-based observational semantics 75

Analysis techniques: a type system

Analysis techniques A type system for checking confidentiality properties 76

A type system for confidentiality properties

Type systems could be a scalable way to provide evidence that a
large number of SOC applications enjoy some given properties

Confidentiality properties
Critical data (e.g. credit card information) are shared only by
authorized partners

Our type system permits
I expressing and forcing policies regulating the exchange of data

among interacting services
I ensuring that, in that respect, services do not manifest unexpected

behaviours

Analysis techniques A type system for checking confidentiality properties 77

Syntax of typed COWS
s ::= (services)

kill(k) (kill)
| u •u′!〈{ε1}r1 , . . . , {εn}rn〉 (invoke)
|
∑r

i=0 pi •oi ?w̄i .si (choice)
| s | s (parallel)
| {|s|} (protection)
| [e] s (delimitation)
| ∗ s (replication)

(notations)
k : (killer) labels
ε: expressions

x : variables
v : values

n,p,o: names
u: vars |names
w : vars | values
e: labels | vars |names

Programmers can settle the partners usable to exchange any given datum,
thus avoiding the datum be accessed by unwanted services

Data are annotated with regions: u •u′!〈{ε1}r1 , . . . , {εn}rn〉

Regions r1. . . rn specify the policies regulating the exchange of the data
resulting from evaluation of ε1. . . εn

A region r can be either a finite subset of partners and variables or the
distinct element > (denoting the universe of partners)

Analysis techniques A type system for checking confidentiality properties 78

Syntax of typed COWS
s ::= (services)

kill(k) (kill)
| u •u′!〈{ε1}r1 , . . . , {εn}rn〉 (invoke)
|
∑r

i=0 pi •oi ?w̄i .si (choice)
| s | s (parallel)
| {|s|} (protection)
| [e] s (delimitation)
| ∗ s (replication)

(notations)
k : (killer) labels
ε: expressions

x : variables
v : values

n,p,o: names
u: vars |names
w : vars | values
e: labels | vars |names

Programmers can settle the partners usable to exchange any given datum,
thus avoiding the datum be accessed by unwanted services

Data are annotated with regions: u •u′!〈{ε1}r1 , . . . , {εn}rn〉

Regions r1. . . rn specify the policies regulating the exchange of the data
resulting from evaluation of ε1. . . εn

A region r can be either a finite subset of partners and variables or the
distinct element > (denoting the universe of partners)

Analysis techniques A type system for checking confidentiality properties 78

Static and dynamic semantics

Static semantics
A static type system infers region annotations for variable declarations
and returns well-typed terms

Dynamic semantics
The operational semantics exploits region annotations to authorize or
block the exchange of data

Analysis techniques A type system for checking confidentiality properties 79

Static semantic

The static type inference system has two main tasks
I performs some coherence checks

e.g. the partner used by an invoke must belong to the regions of all
data occurring in the argument of the activity

I derives the minimal region annotations for variable declarations that
ensure consistency of services initial configuration

F [{x}r] s means that the datum that dynamically will replace x will be
used at most by the partners in r

Typing judgements are written Γ ` s � Γ′ ` s′, where the type
environment Γ is a finite function from variables to regions

s is well-typed if ∅ ` s′ � ∅ ` s , for some s′

i.e. s is the (typed) service obtained by decorating s′ with the
regions describing the use of each variable of s′ in its scope

Analysis techniques A type system for checking confidentiality properties 80

Static semantic

The static type inference system has two main tasks
I performs some coherence checks

e.g. the partner used by an invoke must belong to the regions of all
data occurring in the argument of the activity

I derives the minimal region annotations for variable declarations that
ensure consistency of services initial configuration

F [{x}r] s means that the datum that dynamically will replace x will be
used at most by the partners in r

Typing judgements are written Γ ` s � Γ′ ` s′, where the type
environment Γ is a finite function from variables to regions

s is well-typed if ∅ ` s′ � ∅ ` s , for some s′

i.e. s is the (typed) service obtained by decorating s′ with the
regions describing the use of each variable of s′ in its scope

Analysis techniques A type system for checking confidentiality properties 80

Static semantics : significant typing rules
Rule for (monadic) invoke activity:

u ∈ r

Γ ` u •u′!{e(ȳ)}r � (Γ + {x : r}x∈ȳ) ` u •u′!{e(ȳ)}r

I it checks if the invoked partner u belongs to the region of the datum
I if it succeeds, the type environment Γ is extended by associating a

proper region to each variable used in the argument expression e

Rule for variable delimitation:

Γ] {x : ∅} ` s � Γ′] {x : r} ` s′ x /∈ reg(Γ′)

Γ ` [x] s � Γ′ ` [{x}r−{x}] s′

I it annotates the delimitation with the region associated to it by the
type environment

I premiss x /∈ reg(Γ′) and annotation r − {x} prevent initially closed
services to become open at the end of the inference

Analysis techniques A type system for checking confidentiality properties 81

Static semantics : significant typing rules
Rule for (monadic) invoke activity:

u ∈ r

Γ ` u •u′!{e(ȳ)}r � (Γ + {x : r}x∈ȳ) ` u •u′!{e(ȳ)}r

I it checks if the invoked partner u belongs to the region of the datum
I if it succeeds, the type environment Γ is extended by associating a

proper region to each variable used in the argument expression e

Rule for variable delimitation:

Γ] {x : ∅} ` s � Γ′] {x : r} ` s′ x /∈ reg(Γ′)

Γ ` [x] s � Γ′ ` [{x}r−{x}] s′

I it annotates the delimitation with the region associated to it by the
type environment

I premiss x /∈ reg(Γ′) and annotation r − {x} prevent initially closed
services to become open at the end of the inference

Analysis techniques A type system for checking confidentiality properties 81

Dynamic semantics

The language operational semantics only performs efficiently
implementable checks to authorize or block communication

I types are just sets of (partner) names

I the region annotation (policy) of output data must contain the region
annotation of the corresponding input variables

The most significant modified rule:

s
nσ]{x 7→{v}r} ` v̄−−−−−−−−−−−−→ s′ r ′ · σ ⊆ r

[{x}r ′] s
nσ ` v̄−−−−−→ s′ ·{x 7→ {v}r}

Analysis techniques A type system for checking confidentiality properties 82

Dynamic semantics

The language operational semantics only performs efficiently
implementable checks to authorize or block communication

I types are just sets of (partner) names

I the region annotation (policy) of output data must contain the region
annotation of the corresponding input variables

The most significant modified rule:

s
nσ]{x 7→{v}r} ` v̄−−−−−−−−−−−−→ s′ r ′ · σ ⊆ r

[{x}r ′] s
nσ ` v̄−−−−−→ s′ ·{x 7→ {v}r}

Analysis techniques A type system for checking confidentiality properties 82

Results

Major results
Subject reduction & type safety results imply that services always
comply with the constraints (expressed by the type) of each datum

Subject reduction states that well-typedness is preserved along
computations

Type safety states that well-typed services do respect region
annotations

Analysis techniques A type system for checking confidentiality properties 83

Results

Major results
Subject reduction & type safety results imply that services always
comply with the constraints (expressed by the type) of each datum

Soundness
A service s is sound if, for any datum v occurring in s associated to
region r and for all possible evolutions of s, it holds that v can only be
exchanged using partners in r

Analysis techniques A type system for checking confidentiality properties 83

The bank service with security policies

client
service

c,1234,
100€

charge

respc x

bank

...

client ,
bank • charge!〈c,1234,100AC〉
| [x] (c • resp?〈x〉.s | s′)

Client policy : only bank is authorized
to access credit card data

Analysis techniques A type system for checking confidentiality properties 84

The bank service with security policies

client
service

c,{1234}
{bank}

,
100€charge

respc x

bank

...

Tclient ,
bank • charge!〈c, {1234}{bank},100AC〉
| [x] (c • resp?〈x〉.s | s′)

Client policy : only bank is authorized
to access credit card data

Analysis techniques A type system for checking confidentiality properties 84

The bank service with security policies

client
service

c,{1234}
{bank}

,
100€charge

respc x

bank

...

Tclient ,
bank • charge!〈c, {1234}{bank},100AC〉
| [x] (c • resp?〈x〉.s | s′)

Client policy : only bank is authorized
to access credit card data

The type system infers the region annotations for the bank service, e.g. . . .

Analysis techniques A type system for checking confidentiality properties 84

The bank service with security policies

client
service

c,{1234}
{bank}

,
100€charge

respc x

bank

...

Tclient ,
bank • charge!〈c, {1234}{bank},100AC〉
| [x] (c • resp?〈x〉.s | s′)

Client policy : only bank is authorized
to access credit card data

The type system infers the region annotations for the bank service, e.g. . . .

bank

bankInterfacebankInterface

check

ok
failbank

bankcheck

ok
fail

check,ok,failbank service

charge

“ok”/ “fail” respxc

* * creditRatingxc,xcc,
xamount

bankInterface ,
[xc, xcc, xamount]
bank • charge?〈xc, xcc, xamount〉.
(bank • check!〈xcc, xamount〉
| bank •ok?〈xcc〉. xc • resp!〈“ok”〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”〉)

Analysis techniques A type system for checking confidentiality properties 84

The bank service with security policies

client
service

c,{1234}
{bank}

,
100€charge

respc x

bank

...

Tclient ,
bank • charge!〈c, {1234}{bank},100AC〉
| [x] (c • resp?〈x〉.s | s′)

Client policy : only bank is authorized
to access credit card data

The type system infers the region annotations for the bank service, e.g. . . .

bank

bankInterfacebankInterface

check

ok
failbank

bankcheck

ok
fail

check,ok,failbank service

charge

“ok”/ “fail” respxc

* * creditRatingxc,xcc,
xamount

TbankInterface ,
[{xc}{bank},{xcc}{bank},{xamount}{bank}]
bank • charge?〈xc, xcc, xamount〉.
(bank • check!〈xcc, xamount〉
| bank •ok?〈xcc〉. xc • resp!〈“ok”〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”〉)

Analysis techniques A type system for checking confidentiality properties 84

The bank service with security policies

Tclient , bank • charge!〈c, {1234}{bank},100AC〉
| [x] (c • resp?〈x〉.s | s′)

Client policy: only bank is authorized to access credit card data

TbankInterface , [{xc}{bank}, {xcc}{bank}, {xamount}{bank}]
bank • charge?〈xc, xcc, xamount〉.
(bank • check!〈xcc, xamount〉
| bank •ok?〈xcc〉. xc • resp!〈“ok”〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”〉)

By using the statically inferred annotations, . . .

Analysis techniques A type system for checking confidentiality properties 85

The bank service with security policies

Tclient , bank • charge!〈c, {1234}{bank},100AC〉
| [x] (c • resp?〈x〉.s | s′)

Client policy: only bank is authorized to access credit card data

TbankInterface , [{xc}{bank}, {xcc}{bank}, {xamount}{bank}]
bank • charge?〈xc, xcc, xamount〉.
(bank • check!〈xcc, xamount〉
| bank •ok?〈xcc〉. xc • resp!〈“ok”〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”〉)

By using the statically inferred annotations, the operational semantics
guarantees that the content of xcc cannot become available to other services

Tclient | [check,ok, fail] (∗TbankInterface | ∗ creditRating) −−→ . . .

Indeed, region({xcc}{bank}) ⊆ region({1234}{bank})

Analysis techniques A type system for checking confidentiality properties 85

A malicious bank service

Tclient , bank • charge!〈c, {1234}{bank},100AC〉
| [x] (c • resp?〈x〉.s | s′)

Client policy: only bank is authorized to access credit card data

spyBankInterface , [xc, xcc, xamount]
bank • charge?〈xc, xcc, xamount〉.
(spy • check!〈xcc, xamount〉
| bank •ok?〈xcc〉. xc • resp!〈“ok”〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”〉)

Analysis techniques A type system for checking confidentiality properties 86

A malicious bank service

Tclient , bank • charge!〈c, {1234}{bank},100AC〉
| [x] (c • resp?〈x〉.s | s′)

Client policy: only bank is authorized to access credit card data

TspyBankInterface , [{xc}{bank}, {xcc}{bank, spy}, {xamount}{bank, spy}]
bank • charge?〈xc, xcc, xamount〉.
(spy • check!〈xcc, xamount〉
| bank •ok?〈xcc〉. xc • resp!〈“ok”〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”〉)

From the statically inferred annotations, . . .

Analysis techniques A type system for checking confidentiality properties 86

A malicious bank service

Tclient , bank • charge!〈c, {1234}{bank},100AC〉
| [x] (c • resp?〈x〉.s | s′)

Client policy: only bank is authorized to access credit card data

TspyBankInterface , [{xc}{bank}, {xcc}{bank, spy}, {xamount}{bank, spy}]
bank • charge?〈xc, xcc, xamount〉.
(spy • check!〈xcc, xamount〉
| bank •ok?〈xcc〉. xc • resp!〈“ok”〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”〉)

From the statically inferred annotations, we can see that the contents of xcc
and xamount can become available to spy!

Analysis techniques A type system for checking confidentiality properties 86

A malicious bank service

Tclient , bank • charge!〈c, {1234}{bank},100AC〉
| [x] (c • resp?〈x〉.s | s′)

Client policy: only bank is authorized to access credit card data

TspyBankInterface , [{xc}{bank}, {xcc}{bank, spy}, {xamount}{bank, spy}]
bank • charge?〈xc, xcc, xamount〉.
(spy • check!〈xcc, xamount〉
| bank •ok?〈xcc〉. xc • resp!〈“ok”〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”〉)

From the statically inferred annotations, we can see that the contents of xcc
and xamount can become available to spy!

The operational semantics does block the transition

Tclient | [check,ok, fail] (∗TspyBankInterface | ∗ creditRating) 6−−→

Indeed, region({xcc}{bank, spy}) 6⊆ region({1234}{bank})

Analysis techniques A type system for checking confidentiality properties 86

The bank service: a bank policy

TclientKey , bank • charge!〈c, {1234}{bank},100AC〉
| [x, ykey] (c • resp?〈x, ykey〉.s | s′)

The client can also receive a personal secret key to be used for
successive operations

Analysis techniques A type system for checking confidentiality properties 87

The bank service: a bank policy

TclientKey , bank • charge!〈c, {1234}{bank},100AC〉
| [x, ykey] (c • resp?〈x, ykey〉.s | s′)

The client can also receive a personal secret key to be used for
successive operations

bankKeyInterface , [xc, xcc, xamount]
bank • charge?〈xc, xcc, xamount〉.
(bank • check!〈xcc, xamount〉
| bank •ok?〈xcc〉. xc • resp!〈“ok”, {key}{xc,bank}〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”, null〉)

Policy: the bank service wants to guarantees that the key sent to
the client is not disclosed to third parties

Analysis techniques A type system for checking confidentiality properties 87

The bank service: a bank policy

TclientKey , bank • charge!〈c, {1234}{bank},100AC〉
| [x, ykey] (c • resp?〈x, ykey〉.s | s′)

The client can also receive a personal secret key to be used for
successive operations

bankKeyInterface , [xc, xcc, xamount]
bank • charge?〈xc, xcc, xamount〉.
(bank • check!〈xcc, xamount〉
| bank •ok?〈xcc〉. xc • resp!〈“ok”, {key}{xc,bank}〉

+ bank • fail?〈xcc〉. xc • resp!〈“fail”, null〉)

Policy: the bank service wants to guarantees that the key sent to
the client is not disclosed to third parties

The policy is not fixed at design time, but depends on the value of xc

Analysis techniques A type system for checking confidentiality properties 87

Analysis techniques: a logical framework

Analysis techniques A logical verification methodology 88

Logics and Model checking

Process calculi provide behavioral specifications of services

Logics have been long since proved able to reason about such
complex systems as SOC applications

I provide abstract specifications of these complex systems

I can be used for describing system properties rather than system
behaviors

Logics and model checkers can be used as tools for verifying that
services enjoy desirable properties and do not manifest
unexpected behaviors

Analysis techniques A logical verification methodology 89

A logical verification methodology

Informal or semi-formal specification
(e.g. UML4SOA, SRML, …)

COWS model

SocL formulae CMC

Verification
results

requirements
formalisation

formal
specification

Model
Checking

Analysis techniques A logical verification methodology 90

Requirements formalisation
To formally express service properties we exploit

SocL
an action- and state-based, branching time, temporal logic expressly
designed to formalise in a convenient way distinctive aspects of services

action- and state-based logic
⇓

Doubly Labelled Transition Systems (L2TS) as interpretation domain
⇓

Abstract notion of services
services are thought of as sw entities which may have an internal
state and can interact with each other
services are characterised by actions and atomic propositions of
the form type/name(interaction, corrTuple)

Analysis techniques A logical verification methodology 91

Requirements formalisation
To formally express service properties we exploit

SocL
an action- and state-based, branching time, temporal logic expressly
designed to formalise in a convenient way distinctive aspects of services

action- and state-based logic
⇓

Doubly Labelled Transition Systems (L2TS) as interpretation domain
⇓

Abstract notion of services
services are thought of as sw entities which may have an internal
state and can interact with each other
services are characterised by actions and atomic propositions of
the form type/name(interaction, corrTuple)

Analysis techniques A logical verification methodology 91

SocL actions
Actions (a ∈ Act)
have the form t(i , c)

t : type of the action (e.g. request , response, fail , . . .)

i : name of the interaction which the action is part of (e.g. charge)

c: tuple of correlation values and variables identifying the interaction;
var denotes a binding occurrence of the correlation variable var

Examples
request(charge,1234,1): action starting an (instance of the) interaction
charge which will be identified through the correlation tuple 〈1234,1〉
a corresponding response action can be response(charge,1234,1)

request(charge,1234, id): request action where the second correlation
value is unknown; a (binder for a) correlation variable id is used instead
a corresponding response action can be response(charge,1234, id);
the (free) occurrence of the correlation variable id indicates the
connection with the action where the variable is bound

Analysis techniques A logical verification methodology 92

SocL actions
Actions (a ∈ Act)
have the form t(i , c)

t : type of the action (e.g. request , response, fail , . . .)

i : name of the interaction which the action is part of (e.g. charge)

c: tuple of correlation values and variables identifying the interaction;
var denotes a binding occurrence of the correlation variable var

Examples
request(charge,1234,1): action starting an (instance of the) interaction
charge which will be identified through the correlation tuple 〈1234,1〉
a corresponding response action can be response(charge,1234,1)

request(charge,1234, id): request action where the second correlation
value is unknown; a (binder for a) correlation variable id is used instead
a corresponding response action can be response(charge,1234, id);
the (free) occurrence of the correlation variable id indicates the
connection with the action where the variable is bound

Analysis techniques A logical verification methodology 92

SocL actions
Actions (a ∈ Act)
have the form t(i , c)

t : type of the action (e.g. request , response, fail , . . .)

i : name of the interaction which the action is part of (e.g. charge)

c: tuple of correlation values and variables identifying the interaction;
var denotes a binding occurrence of the correlation variable var

Examples
request(charge,1234,1): action starting an (instance of the) interaction
charge which will be identified through the correlation tuple 〈1234,1〉
a corresponding response action can be response(charge,1234,1)

request(charge,1234, id): request action where the second correlation
value is unknown; a (binder for a) correlation variable id is used instead
a corresponding response action can be response(charge,1234, id);
the (free) occurrence of the correlation variable id indicates the
connection with the action where the variable is bound

Analysis techniques A logical verification methodology 92

SocL atomic propositions

Atomic propositions (π ∈ AP)
have the form p(i , c)

p: name of the proposition (accepting_request , accepting_cancel , . . .)

i : name of the interaction (e.g. charge)

c: tuple of correlation values and free variables

Examples
accepting_request(charge): proposition indicating that a state can
accept requests for the interaction charge (regardless of the correlation
data)
accepting_cancel(charge,1234,1): a state permits to cancel those
requests for interaction charge identified by the correlation tuple
〈1234,1〉

Analysis techniques A logical verification methodology 93

SocL atomic propositions

Atomic propositions (π ∈ AP)
have the form p(i , c)

p: name of the proposition (accepting_request , accepting_cancel , . . .)

i : name of the interaction (e.g. charge)

c: tuple of correlation values and free variables

Examples
accepting_request(charge): proposition indicating that a state can
accept requests for the interaction charge (regardless of the correlation
data)
accepting_cancel(charge,1234,1): a state permits to cancel those
requests for interaction charge identified by the correlation tuple
〈1234,1〉

Analysis techniques A logical verification methodology 93

SocL syntax

State formulae syntax

φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ

Path formulae syntax

Ψ ::= Xγφ | φ χUγ φ
′ | φ χW γ φ

′

Action formulae syntax

γ ::= a | χ χ ::= tt | a | τ | ¬χ | χ ∧ χ
a indicates that the action may contain variables binders

Some derived modalities
< γ > φ stands for EXγ φ [γ]φ stands for ¬ < γ > ¬φ
E(φ χU φ′) stands for φ′ ∨ E(φχUχ∨τ φ′) EFφ stands for E(true tt Uφ)
AFγ true stands for A(true tt Uγ true) AG φ stands for ¬EF ¬φ

Analysis techniques A logical verification methodology 94

SocL syntax

State formulae syntax

φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ

Path formulae syntax

Ψ ::= Xγφ | φ χUγ φ
′ | φ χW γ φ

′

Action formulae syntax

γ ::= a | χ χ ::= tt | a | τ | ¬χ | χ ∧ χ
a indicates that the action may contain variables binders

Some derived modalities
< γ > φ stands for EXγ φ [γ]φ stands for ¬ < γ > ¬φ
E(φ χU φ′) stands for φ′ ∨ E(φχUχ∨τ φ′) EFφ stands for E(true tt Uφ)
AFγ true stands for A(true tt Uγ true) AG φ stands for ¬EF ¬φ

E and A are existential and universal (resp.) path quantifiers

Analysis techniques A logical verification methodology 94

SocL syntax

State formulae syntax

φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ

Path formulae syntax

Ψ ::= Xγφ | φ χUγ φ
′ | φ χW γ φ

′

Action formulae syntax

γ ::= a | χ χ ::= tt | a | τ | ¬χ | χ ∧ χ
a indicates that the action may contain variables binders

Some derived modalities
< γ > φ stands for EXγ φ [γ]φ stands for ¬ < γ > ¬φ
E(φ χU φ′) stands for φ′ ∨ E(φχUχ∨τ φ′) EFφ stands for E(true tt Uφ)
AFγ true stands for A(true tt Uγ true) AG φ stands for ¬EF ¬φ

Analysis techniques A logical verification methodology 94

SocL syntax

State formulae syntax

φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ

Path formulae syntax

Ψ ::= Xγφ | φ χUγ φ
′ | φ χW γ φ

′

Action formulae syntax

γ ::= a | χ χ ::= tt | a | τ | ¬χ | χ ∧ χ
a indicates that the action may contain variables binders

Some derived modalities
< γ > φ stands for EXγ φ [γ]φ stands for ¬ < γ > ¬φ
E(φ χU φ′) stands for φ′ ∨ E(φχUχ∨τ φ′) EFφ stands for E(true tt Uφ)
AFγ true stands for A(true tt Uγ true) AG φ stands for ¬EF ¬φ

X , U and W are the next, (strong) until and weak until operators
Xγφ says that in the next state of the path, reached by an action
satisfying γ, the formula φ holds

φ χUγ φ′ says that φ′ holds at some future state of the path reached by a
last action satisfying γ, while φ holds from the current state until that
state is reached and all the actions executed in the meanwhile along the
path satisfy χ

φ χWγ φ
′ holds on a path either if the corresponding strong until operator

holds or if for all the states of the path the formula φ holds and all the
actions of the path satisfy χ

Analysis techniques A logical verification methodology 94

SocL syntax

State formulae syntax

φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ

Path formulae syntax

Ψ ::= Xγφ | φ χUγ φ
′ | φ χW γ φ

′

Action formulae syntax

γ ::= a | χ χ ::= tt | a | τ | ¬χ | χ ∧ χ
a indicates that the action may contain variables binders

Some derived modalities
< γ > φ stands for EXγ φ [γ]φ stands for ¬ < γ > ¬φ
E(φ χU φ′) stands for φ′ ∨ E(φχUχ∨τ φ′) EFφ stands for E(true tt Uφ)
AFγ true stands for A(true tt Uγ true) AG φ stands for ¬EF ¬φ

Analysis techniques A logical verification methodology 94

SocL syntax

State formulae syntax

φ ::= true | π | ¬φ | φ ∧ φ′ | EΨ | AΨ

Path formulae syntax

Ψ ::= Xγφ | φ χUγ φ
′ | φ χW γ φ

′

Action formulae syntax

γ ::= a | χ χ ::= tt | a | τ | ¬χ | χ ∧ χ
a indicates that the action may contain variables binders

Some derived modalities
< γ > φ stands for EXγ φ [γ]φ stands for ¬ < γ > ¬φ
E(φ χU φ′) stands for φ′ ∨ E(φχUχ∨τ φ′) EFφ stands for E(true tt Uφ)
AFγ true stands for A(true tt Uγ true) AG φ stands for ¬EF ¬φ

<γ>φ states that it is possible to perform an action satisfying γ and
thereby reaching a state that satisfies formula φ

[γ]φ states that no matter how a process performs an action satisfying
γ, the state it reaches in doing so will necessarily satisfy the formula φ

EFφ means that there is some path that leads to a state at which φ
holds; that is, φ eventually holds on some path

AFγ φ means that an action satisfying γ will be performed in the future
along every path and at the reached states φ holds; if φ is true, we say
that an action satisfying γ will always eventually be performed

AG φ states that φ holds at every state on every path; that is, φ holds
globally

Analysis techniques A logical verification methodology 94

SocL description of abstract properties

Availability
the service is always capable to accept a request

AG(accepting_ request(i))

Reliability
the service guarantees a successful response to each received request

AG[request(i , v)]AFresponse(i,v) true

Responsiveness
the service guarantees a response to each received request

AG[request(i , v)] AFresponse(i,v)∨fail(i,v) true

. . .

Analysis techniques A logical verification methodology 95

A novel verification methodology of service properties
1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

Concrete
COWS model

Abstract
SocL formulae

CMC
model checker

Verification
results

Analysis techniques A logical verification methodology 96

A novel verification methodology of service properties
1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

Concrete
COWS model

Abstract
SocL formulae

CMC
model checker

Verification
results

Analysis techniques A logical verification methodology 96

A novel verification methodology of service properties
1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

Concrete
COWS model

Abstract
SocL formulae

CMC
model checker

Verification
results

Analysis techniques A logical verification methodology 96

A novel verification methodology of service properties
1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

We resort to a linguistic formalism rather than directly using L2TSs because

L2TSs are too low level

L2TSs suffer for lack of compositionality,
i.e. they offer no means for constructing the L2TS of a composed service
in terms of the L2TSs of its components

linguistic terms are more intuitive and concise notations

using linguistic terms, services are built in a compositional way

linguistic terms are syntactically finite, even when the corresponding
semantic model (i.e. L2TSs) is not

Analysis techniques A logical verification methodology 96

A novel verification methodology of service properties
1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

Concrete
COWS model

Abstract
SocL formulae

CMC
model checker

Verification
results

Analysis techniques A logical verification methodology 96

A novel verification methodology of service properties
1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

Concrete
COWS model

Abstract
SocL formulae

CMC
model checker

Verification
results

Abstract
COWS model

Abstraction
Abstraction

rules

Automatically
performed by CMC

e.g.
Action: creditRequest<$1> → request(cr,$1)
Action: offer<$1,*,*> → response(cr,$1)
 …
 State: login → accepting_request(login)

Analysis techniques A logical verification methodology 96

A novel verification methodology of service properties
1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

Concrete
COWS model

Abstract
SocL formulae

CMC
model checker

Verification
results

Analysis techniques A logical verification methodology 96

A novel verification methodology of service properties
1 Properties are initially formalized as SocL formulae,

while preserving their independence from individual service
domains and specifications

2 Services behaviour are specified as COWS terms
3 Formulae are tailored to a given specification of a service

by means of some abstraction rules that relate actions in the
specification with actions of the logic

4 The verification process takes place

Concrete
COWS model

Abstract
SocL formulae

CMC
model checker

Verification
results

Analysis techniques A logical verification methodology 96

The model checker CMC
To assist the verification process of SocL formulae over L2TS

CMC is an efficient on-the-fly model checker

The basic idea behind CMC is that, given a state of an L2TS, the
validity of a SocL formula on that state can be established by:

I checking the satisfiability of the state predicates
I analyzing the transitions allowed in that state
I establishing the validity of some subformula in some/all of the next

reachable states

If a SocL formula is not satisfied, a counterexample is exhibited

CMC can be used to verify properties of services specified in COWS

CMC can be downloaded or experimented via its web interface at
http://fmt.isti.cnr.it/cmc

Analysis techniques A logical verification methodology 97

Model checking the bank service

bank

bankInterfacebankInterface

check

ok
fail

bank

bankcheck

ok
fail

check,ok,failbank servicebank service

charge

xid,
“ok”/ “fail”

respxc

xc,xcc,
xamount,xid

* * creditRatingcreditRating

Analysis techniques A logical verification methodology 98

Model checking the bank service
The instantiation of the generic patterns of formulae over the bank service is
obtained by just replacing any occurrence of i with charge

The bank service is always available
AG (accepting_ request(charge))

In every state the service may accept a request for the interaction charge

The bank service is responsive
AG [request(charge, v)] AFresponse(charge,v)∨fail(charge,v) true

The response and the failure notification belong to the same interaction
charge as the accepted request and they are correlated by the variable v

The bank service is reliable
AG [request(charge, v)] AFresponse(charge,v) true

The service guarantees a successful response to each received request

Analysis techniques A logical verification methodology 99

Model checking the bank service
The instantiation of the generic patterns of formulae over the bank service is
obtained by just replacing any occurrence of i with charge

The bank service is always available
AG (accepting_ request(charge))

In every state the service may accept a request for the interaction charge

The bank service is responsive
AG [request(charge, v)] AFresponse(charge,v)∨fail(charge,v) true

The response and the failure notification belong to the same interaction
charge as the accepted request and they are correlated by the variable v

The bank service is reliable
AG [request(charge, v)] AFresponse(charge,v) true

The service guarantees a successful response to each received request

Analysis techniques A logical verification methodology 99

Model checking the bank service
The instantiation of the generic patterns of formulae over the bank service is
obtained by just replacing any occurrence of i with charge

The bank service is always available
AG (accepting_ request(charge))

In every state the service may accept a request for the interaction charge

The bank service is responsive
AG [request(charge, v)] AFresponse(charge,v)∨fail(charge,v) true

The response and the failure notification belong to the same interaction
charge as the accepted request and they are correlated by the variable v

The bank service is reliable
AG [request(charge, v)] AFresponse(charge,v) true

The service guarantees a successful response to each received request

Analysis techniques A logical verification methodology 99

Model checking the bank service
The instantiation of the generic patterns of formulae over the bank service is
obtained by just replacing any occurrence of i with charge

The bank service is always available
AG (accepting_ request(charge))

In every state the service may accept a request for the interaction charge

The bank service is responsive
AG [request(charge, v)] AFresponse(charge,v)∨fail(charge,v) true

The response and the failure notification belong to the same interaction
charge as the accepted request and they are correlated by the variable v

The bank service is reliable
AG [request(charge, v)] AFresponse(charge,v) true

The service guarantees a successful response to each received request

Analysis techniques A logical verification methodology 99

Tool demonstration . . .

Analysis techniques A logical verification methodology 100

Model checking: a calculus-based approach

We have seen a calculus-based methodology for model checking
COWS specifications

People in charge of verifying systems are required to understand and deal
with calculi and logics.
This may not be the case, especially within , where people are usually familiar
with higher-level UML-based modelling languages

Analysis techniques A logical verification methodology 101

Model checking: a calculus-based approach

We have seen a calculus-based methodology for model checking
COWS specifications

People in charge of verifying systems are required to understand and deal
with calculi and logics.
This may not be the case, especially within industrial contexts, where people
are usually familiar with higher-level UML-based modelling languages

Analysis techniques A logical verification methodology 101

Model checking: a calculus-based approach

We have seen a calculus-based methodology for model checking
COWS specifications

People in charge of verifying systems are required to understand and deal
with calculi and logics.
This may not be the case, especially within industrial contexts, where people
are usually familiar with higher-level UML-based modelling languages

Analysis techniques A logical verification methodology 101

Model checking: a calculus-based approach

We have seen a calculus-based methodology for model checking
COWS specifications

People in charge of verifying systems are required to understand and deal
with calculi and logics.
This may not be the case, especially within industrial contexts, where people
are usually familiar with higher-level UML-based modelling languages

Analysis techniques A logical verification methodology 101

UML4SOA

The most widely used language for modelling sw systems is UML

UML4SOA is a UML 2.0 profile, inspired by WS-BPEL,
that has been expressly designed for modeling service-oriented
applications

UML4SOA activity diagrams express the behavioral aspects of
services

I integrate UML with specialized actions for exchanging messages,
specialized structured activity nodes and activity edges for
representing scopes with event, fault and compensation handlers

UML in general, and UML4SOA in particular, falls short of
providing formal semantics and rigorous verification techniques

Since UML4SOA specifications are static models, they are not
suitable for direct automated analysis

Analysis techniques A logical verification methodology 102

UML4SOA

The most widely used language for modelling sw systems is UML

UML4SOA is a UML 2.0 profile, inspired by WS-BPEL,
that has been expressly designed for modeling service-oriented
applications

UML4SOA activity diagrams express the behavioral aspects of
services

I integrate UML with specialized actions for exchanging messages,
specialized structured activity nodes and activity edges for
representing scopes with event, fault and compensation handlers

UML in general, and UML4SOA in particular, falls short of
providing formal semantics and rigorous verification techniques

Since UML4SOA specifications are static models, they are not
suitable for direct automated analysis

Analysis techniques A logical verification methodology 102

UML4SOA: diagram example
bankService bankServiceactivity []

<<scope>>

main

<<receive>>

charge <cc,amount,id>client

<<receive>>

checkOk
creditRating id

<<send>>

checkcreditRating <id,cc,amount>

<<receive>>

checkFail
creditRating id

<<send>>

chargeOKclient
id <<send>>

chargeFail
client

id

e5 e6

e1

e2

e3 e4

e7 e8

Analysis techniques A logical verification methodology 103

How to reconcile

Analysis techniques A logical verification methodology 104

How to reconcile

Analysis techniques A logical verification methodology 104

Our proposal

Analysis techniques A logical verification methodology 105

Our proposal

Analysis techniques A logical verification methodology 105

Our proposal

Venus: a Verification ENvironment for UML models of Services
A software environment for verifying behavioural properties of UML
models of services by exploiting process calculi and temporal logics

UML models of services: UMLSOA activity diagrams
Venus shepherds the (non-expert) users to set the behavioural
service properties they want to verify
It is a proof-of-concept implementation

Analysis techniques A logical verification methodology 106

Our proposal

Venus: a Verification ENvironment for UML models of Services
A software environment for verifying behavioural properties of UML
models of services by exploiting process calculi and temporal logics

UML models of services: UMLSOA activity diagrams
Venus shepherds the (non-expert) users to set the behavioural
service properties they want to verify
It is a proof-of-concept implementation

Analysis techniques A logical verification methodology 106

Our proposal

Venus: a Verification ENvironment for UML models of Services
A software environment for verifying behavioural properties of UML
models of services by exploiting process calculi and temporal logics

UML models of services: UMLSOA activity diagrams
Venus shepherds the (non-expert) users to set the behavioural
service properties they want to verify
It is a proof-of-concept implementation

Analysis techniques A logical verification methodology 106

Our proposal

Venus: a Verification ENvironment for UML models of Services
A software environment for verifying behavioural properties of UML
models of services by exploiting process calculi and temporal logics

UML models of services: UMLSOA activity diagrams
Venus shepherds the (non-expert) users to set the behavioural
service properties they want to verify
It is a proof-of-concept implementation

Analysis techniques A logical verification methodology 106

Tool demonstration . . .

Analysis techniques A logical verification methodology 107

Venus architecture

Analysis techniques A logical verification methodology 108

Venus architecture

Analysis techniques A logical verification methodology 108

From UML4SOA to COWS

creditRequest •initialize?〈xportal ,xid ,xname,xpwd〉

xportal •initialize!〈creditRequest , xid , xuserOk 〉

∗e?〈true〉.
[n1, . . . ,nn] (n1!〈g1〉 | . . . | nn!〈gn〉

| n1?〈true〉.e1!〈true〉 + . . . + nn?〈true〉.en!〈true〉)

∗ (e1?〈true〉.e!〈g〉 + . . .+ en?〈true〉.e!〈g〉)

∗e?〈true〉. (e1!〈g1〉 | . . . | en!〈gn〉)

∗e1?〈true〉.en?〈true〉.e!〈g〉

Analysis techniques A logical verification methodology 109

From UML4SOA to COWS

[r, stack]
([k] (GRAPH ; {|c •main?〈〉.GRAPHc |}

| {|Stack |} | ∗GRAPHev)
| r?〈〉. {|GRAPHe |})

c •main!〈〉 kill(k) | {|r!〈〉|}

stack • compAll!〈〉

Our COWS implementation of UML4SOA constructs follows a
compositional approach

Analysis techniques A logical verification methodology 110

From UML4SOA to COWS

[r, stack]
([k] (GRAPH ; {|c •main?〈〉.GRAPHc |}

| {|Stack |} | ∗GRAPHev)
| r?〈〉. {|GRAPHe |})

c •main!〈〉 kill(k) | {|r!〈〉|}

stack • compAll!〈〉

Our COWS implementation of UML4SOA constructs follows a
compositional approach

Analysis techniques A logical verification methodology 110

Concluding remarks

Concluding remarks 111

Conclusions

COWS permits modelling different and typical aspects of
services and Web services technologies

I multiple start activities, receive conflicts, routing of correlated
messages, service instances and interactions among them

COWS can express the most common workflow patterns and
can encode many other process and orchestration languages

COWS, with some mild linguistic additions, can model all the
relevant phases of the life cycle of service-oriented applications

I publication, discovery, negotiation, deployment, orchestration,
reconfiguration and execution

Concluding remarks 112

Conclusions
Our observational semantics permits to check interchangeability
of services and conformance against service specifications

COWS type system permits specifying and forcing policies for
constraining the services that can safely access any given datum

I Types are just sets and operations on types are union, intersection,
subset inclusion, . . .

I The runtime semantics only involves efficiently implementable
operations on sets

Our logical verification framework for checking functional
properties of SOC applications has many advantages

I It can be easily tailored to other service-oriented specification
languages

I SocL’s parametric formulae permit expressing properties about
many kinds of interaction patterns, e.g. one-way, request-response,
one request-multiple responses, . . .

Concluding remarks 113

On-going & future work

Further analysis techniques
I fully static variant of our type system

I more powerful, behavioural type systems

I an efficient symbolic characterisations of the labelled bisimilarities
over a symbolic operational semantics

I a formal account of COWS’s expressiveness

I analysis of security protocols for web service conversation, e.g.
WS-SecureConversation and WS-Security

Prototype implementations
I a Java-based implementation based of COWS

I an interpreter based on a symbolic operational semantics

I a graphical editor (based on GMF) integrated with the interpreter

Concluding remarks 114

http://rap.dsi.unifi.it/cows/

Thank you!

Concluding remarks 115

http://rap.dsi.unifi.it/cows/

Bibliography 1/4

A WSDL-based type system for WS-BPEL
A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of COORDINATION’06, LNCS
4038, 2006.

A calculus for orchestration of web services
A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of ESOP’07, LNCS 4421, 2007.

go back

Regulating data exchange in service oriented applications
A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of FSEN’07, LNCS 4767, 2007.

go back

COWS: A timed service-oriented calculus
A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of ICTAC’07, LNCS 4711,
2007. go back

Stochastic COWS
D. Prandi, P. Quaglia. Proc. of ICSOC’07, LNCS 4749, 2007.

Concluding remarks 116

http://rap.dsi.unifi.it/cows/papers/wsc-coordination06.pdf
http://rap.dsi.unifi.it/cows/papers/cows-esop07.pdf
http://rap.dsi.unifi.it/cows/papers/cows-fsen07.pdf
http://rap.dsi.unifi.it/cows/papers/cows-ictac07.pdf
http://www.springerlink.com/content/w2l808085878626v/?p=cd88aaa603e84226835042340b626289&pi=19

Bibliography 2/4

A model checking approach for verifying COWS specifications
A. Fantechi, S. Gnesi, A. Lapadula, F. Mazzanti, R. Pugliese, F. Tiezzi.
Proc. of FASE’08, LNCS 4961, 2008. go back

Service discovery and negotiation with COWS
A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of WWV’07, ENTCS 200(3),
2008. go back

Specifying and Analysing SOC Applications with COWS
A. Lapadula, R. Pugliese, F. Tiezzi. In Concurrency, Graphs and Models,
LNCS 5065, 2008.

SENSORIA Patterns: Augmenting Service Engineering with Formal
Analysis, Transformation and Dynamicity
M. Wirsing, et al. Proc. of ISOLA’08, Communications in Computer and
Information Science 17, 2008.

A formal account of WS-BPEL
A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of COORDINATION’08, LNCS
5052, 2008.

Concluding remarks 117

http://rap.dsi.unifi.it/cows/papers/cows_logic.pdf
http://rap.dsi.unifi.it/cows/papers/cows_sla.pdf
http://rap.dsi.unifi.it/cows/papers/cows_ugo.pdf
http://rap.dsi.unifi.it/cows/papers/isola08.pdf
http://rap.dsi.unifi.it/cows/papers/isola08.pdf
http://rap.dsi.unifi.it/cows/papers/blite.pdf

Bibliography 3/4

Formal analysis of BPMN via a translation into COWS
D. Prandi, P. Quaglia, N. Zannone. Proc. of COORDINATION’08, LNCS
5052, 2008.

Relational Analysis of Correlation
J. Bauer, F. Nielson, H.R. Nielson, H. Pilegaard. Proc. of SAS’08, LNCS
5079, 2008.

A Symbolic Semantics for a Calculus for Service-Oriented Computing
R. Pugliese, F. Tiezzi, N. Yoshida. Proc. of PLACES’08, ENTCS 241,
2009.

Specification and analysis of SOC systems using COWS: A finance case
study
F. Banti, A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of WWV’08, ENTCS
235(C), 2009.

From Architectural to Behavioural Specification of Services
L. Bocchi, J.L. Fiadeiro, A. Lapadula, R. Pugliese, F. Tiezzi. Proc. of
FESCA’09, ENTCS 253/1, 2009.

Concluding remarks 118

http://www.springerlink.com/content/j648143597nn2510/?p=cb75e9042f584e62afe63a95484636f9&pi=15
http://www.springerlink.com/content/u6317h7354117658/
http://rap.dsi.unifi.it/cows/papers/cows_places.pdf
http://rap.dsi.unifi.it/cows/papers/cows_wwv08.pdf
http://rap.dsi.unifi.it/cows/papers/cows_wwv08.pdf
http://rap.dsi.unifi.it/cows/papers/fesca09.pdf

Bibliography 4/4

On observing dynamic prioritised actions in SOC
R. Pugliese, F. Tiezzi, N. Yoshida. Proc. of ICALP’09, LNCS 5556, 2009.

go back

On secure implementation of an IHE XUA-based protocol for
authenticating healthcare professionals
M. Masi, R. Pugliese, F. Tiezzi. Proc. of ICISS’09, LNCS 5905, 2009.

Rigorous Software Engineering for Service-Oriented Systems - Results
of the SENSORIA Project on Software Engineering for Service-Oriented
Computing
M. Wirsing and M. Hölzl Editors. LNCS, 2010. To appear.

An Accessible Verification Environment for UML Models of Services
F. Banti, R. Pugliese, F. Tiezzi. Journal of Symbolic Computation, 2010.
To appear.

A criterion for separating process calculi
F. Banti, R. Pugliese, F. Tiezzi. Proc. of EXPRESS’10, 2010. go back

Concluding remarks 119

http://rap.dsi.unifi.it/cows/papers/PTY-bis4cows.pdf
http://rap.dsi.unifi.it/cows/papers/cows_iciss09.pdf
http://rap.dsi.unifi.it/cows/papers/cows_iciss09.pdf
http://rap.dsi.unifi.it/cows/papers/express2010.pdf

	Outline
	Scenario and Motivations
	Service-Oriented Computing
	Motivation

	A gentle introduction to COWS
	COWS
	Syntax of COWSm
	Operational semantics of COWSm
	From COWSm to COWS
	Operational semantics of COWS
	From COWS to COWS
	Syntax of COWS
	Operational semantics of COWS

	COWS expressiveness
	Fault and compensation handling

	Analysis techniques
	A bisimulation-based observational semantics
	A type system for checking confidentiality properties
	A logical verification methodology

	Concluding remarks

