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The promise of Model Checking

• Due to the possibility offered by model checking to give a
definite result on the satisfaction of a property by a system,
model checking has been considered as a very interesting
technique in the realm of critical systems, where safety
could be put at stake by software errors.

• System |=  AG (~ badstate)    SAFETY PROPERTY

• Exhaustive technique, opposed to testing: 100% coverage of
the system states

• Pushbutton technique: in principle no need of effort to
reason on the system
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Problems

– Complexity of real systems
– Scalability of verification techniques to

enormous number of states
– Definition of (safety) properties
– Relationships with accepted guidelines for the

development of Safety Critical Systems
– Industrial strength model checking tools
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Outline of the lecture
• Definitions about safety
• The role of Model Checking in safety critical software:

– Software Model Checking
– Model Based Development
– Experiences in safety-critical domains

• Space
• Avionics
• Railway Signalling

• Some bits on the role of Model Checking in safety critical
systems:
– Quantitative safety evaluation

• Model Checking and safety guidelines
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Classical definitions of Safety and Liveness
• Safety properties

– Invariants, deadlocks, reachability, etc.
– Can be checked on finite traces
– “something bad never happens”
– AG ~ bad

• Liveness Properties
– Fairness, response, etc.
– Infinite traces
– “something good will eventually happen”
– EF good
– “something good will infinitely often happen”
– AGF good

These definitions have only in part something to do with
the reality of safety-critical systems
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Criticality levels - a view

• safety-critical systems: in which a failure can cause deaths
or serious injuries, or serious environmental damage.
– chemical plant control systems,
– X-by-wire systems, where X = fly   (avionics)
                                         or X ! {drive,brake} (automotive)

• mission-critical systems: in which a failure can cause
aborting an activity aimed to an important objective
– the navigation system of a space probe going to explore a far

planet: if the probe is lost, the investment is completely gone.
• business-critical systems: in which a failure can cause

enormous money loss
– a bank’s client accounts management system
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Criticality levels
(from the Avionics Handbook)

• A flight-critical function is one whose loss might result in the loss
of the aircraft itself, and possibly the persons on-board as well. In
the latter case, the system is termed safety-critical.

• Here, a distinction can be made between a civil transport, where
flight-critical implies safety-critical, and a combat aircraft. The
latter admits to the possibility of the crew ejecting from an
unflyable aircraft, so its system reliability requirements may be
lower.

• A mission-critical function is one whose loss would result in the
compromising or aborting of an associated mission. For avionics
systems, a higher cost usually associates with the loss of an
aircraft than with the abort of a mission (an antimissile mission to
repel a nuclear weapon could be an exception). Thus, a full-time
flight-critical system would normally pose much more demanding
reliability requirements than a flight-phase mission-critical system.
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Safety definitions
• safety: Freedom from unacceptable levels of risk. (CENELEC

EN 50126)
• safety:

– An acceptable level of freedom from risks to personnel and
material at all times.

– The inherent property of a system, subsystem or item that enables
it to possess and to maintain an acceptable level of risk during all
situations and activities occurring during its specified life cycle.
(AOP 38)

• safety: Freedom from those conditions that can cause death,
injury, occupational illness, damage to or loss of equipment or
property, or damage to the environment. (MIL-STD-882D)

• safety: The state in which risk is lower than the boundary risk.
The boundary risk is the upper limit of the acceptable risk. It is
specific for a technical process or state. (ARP4754)
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From such definitions, two views of safety:
Absolute vs. Probabilistic Safety

• Absolute safety requires that all causes of
threats to safety are removed

• Probabilistic safety acknowledges the existence of
possible residual unsafe events, although with less
than a required maximum probability of
occurrence
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Systematic vs. Random faults
A parallel can be done with the nature of faults:
• some are systematic, and have their root in some design

error:
– all design errors should be removed
– it is difficult/impractical to estimate a residual probability of

occurrence of a systematic error
• some are random, and a probability of occurrence can be

estimated on the basis of previous failure experience

Very roughly speaking:
– Hardware has random failures
– Software has systematic failures

Hence, hardware is subject to quantitative analysis of safety,
(probabilistic safety) safe software should be “just” correct
(absolute safety).
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Software safety   -    DEF-STAN 00-55

• “Where safety is dependent on the safety related
software (SRS) fully meeting its requirements,
demonstrating safety is equivalent to
demonstrating correctness with respect to the
Software Requirement”.
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Ultimate problems addressable by model
checking

• Checking correctness of the code running on the application
- Two main approaches:
– Code Model Checking (Software Model Checking)
– Model Based Development

• Checking safety of the system (the system never runs into
an unsafe state)
– Concentrating on safety properties on a Model of the system
– Opening to probabilistic safety
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Software Model Checking

• Although the early papers on model checking
focused on software, not many applications to prove
the correctness of code, until 1997

• Until 1997 most work was on software designs
– Finding bugs early is more cost-effective
– Reality is that people write code first, rather than design

• Only later the harder problem of analyzing actual
source code was first attempted

• Pioneering work at NASA
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Software Model Checking

• Bringing programs to model checking
– Translation to a standard Model Checker

• Bringing model checking to programs
– Ad hoc model checkers that directly deal with programs as

input

• In both cases, need of Abstraction.

Most model checkers cannot directly deal with the
features of modern programming languages
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Abstraction

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

Program Model Checker
Input

Possibly infinite state Finite state

© Willem Visser 2002
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Abstraction
• Model checkers don’t take real programs as input
• Model checkers typically work on finite state systems
• Abstraction cuts the state space size to something

manageable
• Abstraction eliminates details irrelevant to the property
• Disadvantage:  Loss of Precision: False positives/negatives

• Abstraction comes in three flavors
– Over-approximations, i.e. more behaviors are added to the

abstracted system than are present in the original
– Under-approximations, i.e. less behaviors are present in the

abstracted system than are present in the original
– Precise abstractions, i.e. the same behaviors are present in the

abstracted and original program
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Under-Approximation
“Meat-Axe” Abstraction

• Remove parts of the program considered “irrelevant” for the
property being checked, e.g.
– Limit input values to 0..10 rather than all integer values
– Queue size 3 instead of unbounded, etc.

• The abstraction of choice in the early applications of
software model checking

• Used during the translation of code to a model checker’s
input language

• Typically manual, no guarantee that only the irrelevant
behaviors are removed.
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Property-directed Slicing

Source program

Precise abstraction
• Precise abstraction, w.r.t. the property being checked, may be obtained if

the behaviors being removed are indeed not influencing the property
– Program slicing is an example of an automated  under-approximation that

will lead to a precise abstraction w.r.t. the property being checked

© Willem Visser 2002
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Property-directed Slicing

• slicing criterion generated automatically from observables mentioned in the property

Source program

Precise abstraction
• Precise abstraction, w.r.t. the property being checked, may be obtained if

the behaviors being removed are indeed not influencing the property
– Program slicing is an example of an automated  under-approximation that

will lead to a precise abstraction w.r.t. the property being checked
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Property-directed Slicing

• slicing criterion generated automatically from observables mentioned in the property
• backwards slicing automatically finds all components that might influence the observables.

Source program
mentioned
in property

indirectly
relevant

Precise abstraction
• Precise abstraction, w.r.t. the property being checked, may be obtained if

the behaviors being removed are indeed not influencing the property
– Program slicing is an example of an automated  under-approximation that

will lead to a precise abstraction w.r.t. the property being checked
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Property-directed Slicing

• slicing criterion generated automatically from observables mentioned in the property
• backwards slicing automatically finds all components that might influence the observables.

Source program

Slice

mentioned
in property

indirectly
relevant

Precise abstraction
• Precise abstraction, w.r.t. the property being checked, may be obtained if

the behaviors being removed are indeed not influencing the property
– Program slicing is an example of an automated  under-approximation that

will lead to a precise abstraction w.r.t. the property being checked
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Property-directed Slicing

• slicing criterion generated automatically from observables mentioned in the property
• backwards slicing automatically finds all components that might influence the observables.

Source program Resulting slice

Slice

mentioned
in property

indirectly
relevant

Precise abstraction
• Precise abstraction, w.r.t. the property being checked, may be obtained if

the behaviors being removed are indeed not influencing the property
– Program slicing is an example of an automated  under-approximation that

will lead to a precise abstraction w.r.t. the property being checked

© Willem Visser 2002
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Over-Approximations
Abstract Interpretation

• Maps sets of states in the concrete program to
one state in the abstract program
– Reduces the number of states, but increases the number

of possible transitions, and hence the number of
behaviors

– Can in rare cases lead to a precise abstraction
• Type-based abstractions  (-->)
• Predicate abstraction (-->)
• Automated (conservative) abstraction
• Problem: Eliminating spurious errors

– Abstract program has more behaviors, therefore when an
error is found in the abstract program, is that also an
error in the original program?
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Data Type Abstraction

int x = 0;
…
if (x == 0)
  x = x + 1;

Abstract Interpretation

NEG   if x<0
h(x) = ZERO if x =0

POS    if x>0

Code

Sign  x = ZERO;
…
if (Sign.eq(x,ZERO))
  x = Sign.add(x,POS);

Abstraction homomorphism    h: int --> Sign

Replace int by Sign abstraction {neg,pos,zero}

h
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Predicate Abstraction

x " y

Abstract

Concrete x = y

F T

# : int $ int     bool

EQ = T EQ = F

x = 0
y = 0

x = 0
y = 1

y++

EQ := F

EQ % (x = y) EQ % (x = y)

• Mapping of a concrete system to an abstract system, whose states
  correspond to truth values of a set of predicate
• Create abstract state-graph during model checking, or,
• Create an abstract transition system before model checking

© Willem Visser 2002

Replace predicates in the program by boolean variables, and replace each
instruction that modifies the predicate with a corresponding instruction
that modifies the boolean.
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How do we Abstract Behaviors?

• Abstract domain A
– Abstract concrete values to those in A

• Then compute transitions in the abstract domain
– Over-approximations: Add extra behaviors
– Under-approximations: Remove actual behaviors
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Underlying model: Kripke Structures

• M = (S,s0,&>,L) on AP
! S: Set of States
! s0: Initial State
! ->: Transition Relation
! L: S -> 2AP, Labeling on States
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Simulations on Kripke Structures
M = (S, s0, ->, L)
M’ = (S’, s’0, ->’, L’)
Definition: R ' S $ S’ is a simulation relation
between M and M’  iff

M’ simulates M (M ~ M’) iff (s0, t0) ! R

Intuitively, every transition in M can be matched by some
transition in M’

(s,s’) ! R implies

1. L(s) = L’(s’)

2. for all  t  s.t.  s ( t ,
       exists  t’  s.t.  s’ (’ t’  and

(t,t’) ! R.
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Preservation of properties by the Abstraction

• M concrete model, M’ abstract model

• Strong Preservation:
– M’ |= P iff M |= P

• Weak Preservation:
– M’ |= P => M |= P

• Simulation preserves ACTL* properties
–  If M ~ M’ then  M’ |= AG p => M |= AG p
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Abstraction Homomorphisms

• Concrete States S, Abstract states S’
• Abstraction function (Homomorphism)

– h: S -> S’
– Induces a partition on S equal to size of S’

• Existential Abstraction - Over-Approximation
– Make a transition from an abstract state if at least one

corresponding concrete state has the transition.
– Abstract model M’ simulates concrete model M

• Universal Abstraction - Under-Approximation
– Make a transition from an abstract state if all the

corresponding concrete states have the transition.
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Existential Abstraction - Preservation

Preservation Theorem

M’  |= )   (  M |= )

 M’ |= ) : counterexample may be spurious

  Converse does not hold
M’ |= ) (  M |= )

  Let ) be a Universally quantified formula (es, an ACTL*
property)

  M’ existentially abstracts M, so M ~ M’
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Universal Abstraction - Preservation

M’ |= ) (  M |= )

  Converse does not hold
M |= f (  M’ |= f

  Let ) be a existential-quantified property (i.e., expressed in
ECTL*) and M simulates M’

   Preservation Theorem
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Model Checking (safety)

I

= unsafe state AG ~ unsafe     (true property)  
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Abstraction:

I
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Abstraction:

I
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Abstraction:

I
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Abstraction:

I
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Abstraction:

I
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Abstraction:

I
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Abstraction:

I
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Abstraction:

I

Under-Approximation
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Abstraction:

I

Under-Approximation
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Abstraction:

I

Under-Approximation

AG ~ unsafe    true (but it is not preserved)
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Abstraction:

I
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Abstraction:

I
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Abstraction:

I

Over-Approximation
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Abstraction:

I

Over-Approximation
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Abstraction:

I

Over-Approximation

AG ~ unsafe
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Abstraction:

I

Over-Approximation

AG ~ unsafe false                             counterexample
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Abstraction:

I

Over-Approximation

AG ~ unsafe false                             counterexamplespurious
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Abstraction:

I

Over-Approximation

AG ~ unsafe false                             counterexamplespurious

  It is not a path in the 
concrete system
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Refinement of the abstraction :

I

Separate states that are the reason of 
the spurious counterexample



Sep-30-10 SEFM School 2010 32

Refinement of the abstraction :

I

AG ~ unsafe    true
Separate states that are the reason of 
the spurious counterexample
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Automated Abstraction/Refinement

• Counterexample-Guided AR (CEGAR)
– Build an abstract model M’
– Model check property P, M’ |= P?
– If M’ |= P, then M |= P by Preservation

Theorem
– Otherwise, check if Counterexample (CE)

is spurious
– Refine abstract state space using CE

analysis results
– Repeat

M’:= abstract(M)

M’:= refine(M’)

M’ |= P

spurious(CE)

F

F

T

T No Bug

Bug
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Hand-Translation
 Early applications at NASA

• Remote Agent – Havelund,Penix,Lowry 1997
– http://ase.arc.nasa.gov/havelund
– Translation from Lisp to Promela (most effort)
– Heavy abstraction
– 3 man months

• DEOS – Penix, Visser, et al. 1998/1999
– http://ase.arc.nasa.gov/visser
– C++ to Promela (most effort in environment generation)
– Limited abstraction - programmers produced sliced system
– 3 man months

© Willem Visser 2002
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Semi-Automatic Translation

• Table-driven translation and abstraction
– Feaver system by Gerard Holzmann
– User specifies code fragments in C and how to translate them

to Promela (SPIN)
– Translation is then automatic
– Found 75 errors in Lucent’s PathStar system
–  http://cm.bell-labs.com/cm/cs/who/gerard/

• Advantages
– Can be reused when program changes
– Works well for programs with long development and only local

changes

© Willem Visser 2002
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Fully Automatic Translation
• Advantage

– No human intervention required
• Disadvantage

– Limited by capabilities of target system
• Examples

– Java PathFinder 1- http://ase.arc.nasa.gov/havelund/jpf.html
• Translates from Java to Promela (Spin)

– JCAT - http://www.dai-arc.polito.it/dai-arc/auto/tools/tool6.shtml
• Translates from Java to Promela (or dSpin)

– Bandera - http://www.cis.ksu.edu/santos/bandera/
• Translates from Java bytecode to Promela, SMV or dSpin

© Willem Visser 2002
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Bringing Model Checking to Programs

• Allow model checkers to take programming languages as
input, (or notations of similar expressive power)

• Major problem: how to encode the state of the system
efficiently

• Alternatively state-less model checking
– No state encoding or storing
– On the fly model checking

• Almost exclusively explicit-state model checking
• Abstraction can still be used as well

– Source to source abstractions
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Custom-made Model Checkers

• Translation based
– dSpin

• Spin extended with dynamic constructs
• Essentially a C model checker
• Source-2-source abstractions can be supported
• http://www.dai-arc.polito.it/dai-arc/auto/tools/tool7.shtml

– SPIN Version 4
• PROMELA language augmented with C code
• Table-driven abstractions

– Bandera
• Translated Bandera Intermediate Language (BIR) to a number of

back-end model checkers, but, a new BIR custom-made model
checker is under development

• Supports source-2-source abstractions as well as property-specific
slicing

• http://www.cis.ksu.edu/santos/bandera/
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Custom-made Model Checkers

• Abstraction based
– SLAM

• C programs are abstracted via predicate abstraction to boolean
programs for model checking

• http://research.microsoft.com/slam/
– BLAST

• Similar basic idea to SLAM, but using lazy abstraction, i.e. during
abstraction refinement don’t abstract the whole program only
certain parts

• http://www-cad.eecs.berkeley.edu/~tah/blast/
– 3-Valued Model Checker (3VMC) extension of TVLA for Java

programs
• http://www.cs.tau.ac.il/~yahave/3vmc.htm
• http://www.math.tau.ac.il/~rumster/TVLA/

© Willem Visser 2002
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Java PathFinder (JPF)

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

Java Code

© Willem Visser 2002
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Java PathFinder (JPF)

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

Java Code

JAVAC
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Java PathFinder (JPF)

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

Java Code

JAVAC

0:    iconst_0
1:    istore_2
2:    goto #39
5:    getstatic 
8:    aload_0
9:    iload_2
10:   aaload

Bytecode 

© Willem Visser 2002
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Java PathFinder (JPF)

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

Java Code

JAVAC JVM

0:    iconst_0
1:    istore_2
2:    goto #39
5:    getstatic 
8:    aload_0
9:    iload_2
10:   aaload

Bytecode 
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Java PathFinder (JPF)

void add(Object o) {
 buffer[head] = o;
 head = (head+1)%size;
}

Object take() {
 …
 tail=(tail+1)%size;
 return buffer[tail];
}

Java Code

JAVAC JVM

0:    iconst_0
1:    istore_2
2:    goto #39
5:    getstatic 
8:    aload_0
9:    iload_2
10:   aaload

Bytecode 

Special 
JVM

Model 
Checker

© Willem Visser 2002
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Bandera & JPF Architecture

BIRC BIR

Simulator

Abstraction
Engine

Slicer

Analyses
Translators

SPIN

dSPIN

SMV

Property Tool

Java
Jimple (BC)

Parser

Error Trace Display JPF
   Decompile ; javac

© Willem Visser 2002
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One Case Study at NASA: DS-1 Remote Agent

• Several person-months to create verification model.
• One person-week to run verification studies.

TasksTasks

Properties Monitor

PropertyProperty
LocksLocks

DataData
basebase

Spacecraft
Commands

Achieve
Property

Change
Event

Lock
Event

Interrupt

Sensors

Subscribe

© Willem Visser 2002
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One Case Study at NASA: DS-1 Remote Agent

• Five difficult to find concurrency errors detected
• “[Model Checking] has had a substantial impact, helping the RA team

improve the quality of the Executive  well beyond what would otherwise
have been produced.” - RA team

• During flight RA deadlocked (in code we didn’t analyze)
– Found this deadlock with JPF

wait

Unexpected timing 
of change event

check

DB change?

yes no

Monitor Logic

© Willem Visser 2002
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Model Based Development

• Pioneering work at NASA has concentrated on
Software Model Checking, that is, work on
software as it is, maybe provided by a third party.

• In a large part of the safety-critical systems
industry, the Model Based Design approach has
emerged as the main paradigm for the
development of software.
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Test Suite

Modelization Phase

Model - Based
Development

Manual coding

Natural Language

Formalized

 Software Requirements 
Document

Architectural Design 
Document

Detailed Design 
Document

Source code

Architectural Design

Detailed Design

Coding

Functional
 test

Integration Test

Unit Test

(Finite State) Model

Test Case 
Definition
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Test Suite

Properties
(formal expr. of 
Requirements)

Modelization Phase

Model - Based
Development

Manual coding

Natural Language

Formalized

Software Requirements 
Document

Architectural Design 
Document

Detailed Design 
Document

Source code

Architectural Design

Detailed Design

Coding

Functional
 test

Integration Test

Unit Test

(Finite State) Model

Formalization 
Phase

Formal
Verification

Test Case 
Generation
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Test Suite

Properties
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Requirements)
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Model - Based
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Test Suite

Modelization Phase

Model - Based
Development

Automatic coding

Natural Language

Formalized

Software Requirements 
Document

Source code

Code
Generation Functional

 test

(Finite State) Model

Test Case 
Definition
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Test Suite
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Requirements)
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Model - Based
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Source code
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(Finite State) Model
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Test Case 
Generation
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Test Suite

Properties
(formal expr. of 
Requirements)

Modelization Phase

Model - Based
Development

Automatic coding

Natural Language
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Software Requirements 
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Source code

Code
Generation Functional

 test

(Finite State) Model

Formalization 
Phase
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Verification

Test Case 
Generation

Model
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GETS model
based

development
cycle

use of MC still limited:
model validation
conducted mostly by
simulation/testing
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GETS model
based

development
cycle

Verification by 
Design Verifier

use of MC still limited:
model validation
conducted mostly by
simulation/testing
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Automatic Train Protection (ATP) Systems
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Verification by
Design Verifier
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Verification by
Design Verifier
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Verification by
Design Verifier
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Verification by
Design Verifier
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Verification by
Design Verifier
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An example of family of systems that pose interesting
challenges to model checking - railway interlocking

• In the railway signaling domain, an interlocking (IXL) is the
safety-critical system that controls the movement of trains
in a station and between adjacent stations.

• The IXL monitors the status of the objects in the railway
yard (e.g., points, switches, track circuits) and allows or
denies the routing of trains in accordance with the railway
safety and operational regulations.

• The instantiation of these rules on a station topology is
stored in the part of the system named control table, that is
specific for the station where the system resides.

• Control tables of computerized IXLs are implemented by
means of iteratively executed software controls over the
status of the yard objects.
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Interlocking - representation and implementation of the logic

• For control tables, usually adopted graphical representations such
as ladder logic diagrams and relay diagrams  (principle schemata)

• the graphical representations and the related control tables can be
reduced to a set of boolean equations of the form

 xi := xj  * ...  *  xj+k,
where xj . . . xj+k are boolean variables in the form x or ~x. The
variables represent the possible states of the signalling elements
monitored by the control table (input, output or temporary
variables)..

• The model of execution is a state machine where equations are
executed one after the other in a cyclic manner and all the
variables are set at the beginning of each cycle and do not change
their actual value until the next cycle.

• PLC-based semantics, implemented either by interpretation by an
off-the shelf PLC, or by a dedicate resolution engine on a dedicated
processor
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Model Checking the logic of an interlocking

• The most critical part of an IXL is the logic (the engine is
reused among several projects…)

• The logic of an interlocking requires a new validation effort
for each station: automating this validation would allow
significant effort sparing. Several companies are looking at
Model Checking (e.g. Siemens)for this purpose

• It is known that IXL logic pose a big challenge to Model
Checking for its rapidly incresing dimensions: only small scale
IXLs tractable

• General Electric Transportation Sytems wanted to
investigate the limits of the technology, by performing
model checking runs over IXLs of increasing sizes.

• Joint study with University of Florence
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Conducted experiments
• size of a control table as the couple (m, n), where m is

maximum number of inter-dependent equations involved, that
means equations that, taken in pairs, have at least one
variable in common, and n is the number of inputs of the
control table.

• (sets of equations that are independent can be verified
separately: slicing can be adopted on the model to reduce
the problem size).

• Random generation of set of equations of different size
• Expression of the equations as models for NuSMV and SPIN
• (choice of mature model checking tool w.r.t. experimental

tools, like PLC model checkers - see later…)
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Safety properties

• One of the typical safety properties that is normally required to be
verified is the no-derailing property:

“while a train is crossing a point the point shall not
change its position”.

• This typical system level requirement can be represented in the
AGAX form:

• AG(occupied(tci) * setting(pi) = val + AX(setting(pi) = val))
– whenever the track circuit tci associated to a point pi is occupied, and

the point has the proper setting val, this setting shall remain the same
on the next state.

• CTL:  AGAX  form    --->   LTL: GX  form
• The experiments have checked over the random generated models

properties in the AGAX/GX form, that were true on the model by
construction
– true safety properties tend to be the hardest ones to prove, since

require the full state space exploration
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NuSMV results
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Spin results
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Did we win?

• The results have confirmed that the bound on the size of
the controlled yard that can be safely addressed by the two
tools is still rather small, making general purpose model
checking tools not usable for medium and large scale IXLs.

• Medium-size IXLs normally have some hundreds of equations
• Slicing can help since medium size IXL can be decomposed in

smaller slices
• Can SAT-based bounded model checking help?

– Indeed, AGp properties pose a problem to a bounded model
checking engine, since this explores only finite length paths.
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Bounded Model Checking and SAT

• Suppose we want to check a LTL property of the form Gp on
a path of length k.

• We write a formula expressing that at least one state of the
path does not satisfy p.

• where xi are state bit vectors, Init is a predicate that holds
for the initial state, p is the predicate saying that p holds in
that state, T is the transition relation.

• Satisfying assignments are counterexamples for the Gp
property
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Checking safety properties with SAT

• No satisfying assignment means the formula is satisfied on the k-
length paths: don’t know about longer paths.

• Unless you prove that there are no such long paths: your k-lenght
paths go back to the initial state:

• Verified on a model with depth k guarantees that the model goes
back to the initial state in no more than k tranistions

• Boolean encoding:

• A counterexample means that either the formula is not satisified,
or the length k is not enough to go back to the initial state.
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Embedded systems

• In embedded systems, behaviour is normally cyclic,
so if you succeed to prove this formula within a
given length, you are done.

• You can give an upper bound to the execution time
of a cycle (WCET): very useful in real-time
systems.

• Problems: increasing length increases complexity
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General form
• In general, prove that every path is of the form:

• that is, that eventually there is a transition to an already
traversed state

• need of µ-calculus to express this property as a temporal
logic formula:

• need of a quadratic formula to encode this property on state
but vectors (but the number of variables is the same)
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Ad hoc form

• If you know the set S of states where a loop starts:

• This is easy in a well-structured program, where loops starts at
while or for locations.

• Technique used by the CBMC software model checker
• Not easy to do for a general state machine, such as the ones

defined by the set of equations of a control table in an IXL
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More Examples of ModelBased Design from
the avionics sector

• Rockwell Collins
• Airbus

• These example show that the trend is not
dissimilar to the one shown by the cases form the
railway sector.

• The different domain pose different challenges,
anyway.
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SCADE

Lustre

 NuSMV

 PVS
Safe State
Machines

 SAL Symbolic
 Model Checker

SAL

Simulink Simulink
Gateway

StateFlow

Reactis  ACL2

 Prover

Simulink
Gateway Design

Verifier

 SAL Infinite 
 Model Checker

 SAL Bounded 
 Model Checker

Rockwell Collins/U of Minnesota

MathWorks

SRI International

Reactive Systems

Esterel Technologies

Verification - Rockwell Collins Translation Framework

© Copyright 2008 Rockwell Collins, Inc.
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ADGS-2100 Adaptive Display & Guidance System

© Copyright 2008 Rockwell Collins, Inc.
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ADGS-2100 Adaptive Display & Guidance System
Modeled in Simulink

Translated to NuSMV

4,295 Subsystems

16,117 Simulink Blocks

Over 1037 Reachable States

© Copyright 2008 Rockwell Collins, Inc.
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ADGS-2100 Adaptive Display & Guidance System

Example Requirement:
Drive the Maximum Number of Display Units

Given the Available Graphics Processors

Modeled in Simulink

Translated to NuSMV

4,295 Subsystems

16,117 Simulink Blocks

Over 1037 Reachable States

© Copyright 2008 Rockwell Collins, Inc.
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ADGS-2100 Adaptive Display & Guidance System

Example Requirement:
Drive the Maximum Number of Display Units

Given the Available Graphics Processors Counterexample
Found in 5 Seconds

Modeled in Simulink

Translated to NuSMV

4,295 Subsystems

16,117 Simulink Blocks

Over 1037 Reachable States

© Copyright 2008 Rockwell Collins, Inc.
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ADGS-2100 Adaptive Display & Guidance System

Example Requirement:
Drive the Maximum Number of Display Units

Given the Available Graphics Processors Counterexample
Found in 5 Seconds

Checked 573 Properties -
Found and Corrected 98 Errors

in Early Design Models

Modeled in Simulink

Translated to NuSMV

4,295 Subsystems

16,117 Simulink Blocks

Over 1037 Reachable States

© Copyright 2008 Rockwell Collins, Inc.
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CerTA FCS Phase I Errors Found in Redundancy Manager

Total

Reset Manager

Failure Processing

Triplex Voter

TestingModel Checking

WPAFB 08-5183 RBO-08685 8/20/2008

© Copyright 2008 Rockwell Collins, Inc.
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CerTA FCS Phase I Errors Found in Redundancy Manager

Total

Reset Manager

Failure Processing

Triplex Voter

TestingModel Checking

5

WPAFB 08-5183 RBO-08685 8/20/2008

© Copyright 2008 Rockwell Collins, Inc.
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CerTA FCS Phase I Errors Found in Redundancy Manager

Total

Reset Manager

Failure Processing

Triplex Voter

TestingModel Checking

5 0

WPAFB 08-5183 RBO-08685 8/20/2008

© Copyright 2008 Rockwell Collins, Inc.



Sep-30-10 SEFM School 2010 72

CerTA FCS Phase I Errors Found in Redundancy Manager

Total

Reset Manager

Failure Processing

Triplex Voter

TestingModel Checking

3
5 0

WPAFB 08-5183 RBO-08685 8/20/2008

© Copyright 2008 Rockwell Collins, Inc.
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CerTA FCS Phase I Errors Found in Redundancy Manager

Total

Reset Manager

Failure Processing

Triplex Voter

TestingModel Checking

3
5 0

0

WPAFB 08-5183 RBO-08685 8/20/2008

© Copyright 2008 Rockwell Collins, Inc.
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CerTA FCS Phase I Errors Found in Redundancy Manager

Total

Reset Manager

Failure Processing

Triplex Voter

TestingModel Checking

3
5

4

0
0

WPAFB 08-5183 RBO-08685 8/20/2008

© Copyright 2008 Rockwell Collins, Inc.
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CerTA FCS Phase I Errors Found in Redundancy Manager

Total

Reset Manager

Failure Processing

Triplex Voter

TestingModel Checking

3
5

4

0
0
0

WPAFB 08-5183 RBO-08685 8/20/2008

© Copyright 2008 Rockwell Collins, Inc.
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CerTA FCS Phase I Errors Found in Redundancy Manager

Total

Reset Manager

Failure Processing

Triplex Voter

TestingModel Checking

3
5

4

12

0
0
0
0

• Model-Checking Found 12 Errors that Testing Missed

WPAFB 08-5183 RBO-08685 8/20/2008

© Copyright 2008 Rockwell Collins, Inc.

Sep-30-10 SEFM School 2010 72

CerTA FCS Phase I Errors Found in Redundancy Manager

Total

Reset Manager

Failure Processing

Triplex Voter

TestingModel Checking

3
5

4

12

0
0
0
0

• Model-Checking Found 12 Errors that Testing Missed

• Spent More Time on Testing than Model-Checking
–  60% of total on testing vs. 40% on model-checking

WPAFB 08-5183 RBO-08685 8/20/2008

© Copyright 2008 Rockwell Collins, Inc.
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CerTA FCS Phase I Errors Found in Redundancy Manager

Total

Reset Manager

Failure Processing

Triplex Voter

TestingModel Checking

3
5

4

12

0
0
0
0

• Model-Checking Found 12 Errors that Testing Missed

• Spent More Time on Testing than Model-Checking
–  60% of total on testing vs. 40% on model-checking

Model-checking was more cost effective
than testing at finding design errors.

WPAFB 08-5183 RBO-08685 8/20/2008

© Copyright 2008 Rockwell Collins, Inc.
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CerTA FCS Phase II – Verification of Floating Point Numbers
  

WPAFB 08-5183 RBO-08685 8/20/2008

© Copyright 2008 Rockwell Collins, Inc.



Sep-30-10 SEFM School 2010 73

• Floating Point Numbers
– No decision procedures for floating point numbers available

• Solution - Translate Floating Point Numbers into Fixed Point
– Extended translation framework to automate this translation
– Convert floating point to fixed point (scaling provided by user)
– Convert fixed point into integers (use bit shifting to preserve

magnitude)
– Shift from NuSMV (BDD-based) to Prover (SMT-solver) model

checker
• Advantages & Issues

– Use bit-level integer decision procedures for model checking
– Results unsound due to loss of precision
– Highly likely to find errors – very valuable tool for debugging

CerTA FCS Phase II – Verification of Floating Point Numbers
  

WPAFB 08-5183 RBO-08685 8/20/2008

© Copyright 2008 Rockwell Collins, Inc.
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The Airbus software V-shaped development cycle
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• Development cycle highly depending on testing
(according to DO178B)

• However, several studies have been conducted on
application of model  checking techniques to
validate SCADE models.

• These experiments have themselves prompted the
development of SCADE’s version of Design
Verifier
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A case study from Airbus

• A380 Ground Spoiler function
• little numerical computation, but sufficiently complex to

challenge the verification tool because of the presence of
temporal counters.

• 48 hours to exhaustively analyze the correct version, (run on
a 1.7-GHz Pentium 4 processor with 256 MB of RAM)

• Production of counterexamples lasted from minutes to hours,
depending on the length of the counterexample and the
chosen exploration strategy (SCADE offers two strategies).

• Returned counter-examples between 50 and 160 cycles
length.
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Notice that:

• As in the case of Mathworks’ Stateflow Design Verifier, also
Esterel Technologies’ SCADE Design Verifier is built on top
of a proprietary very efficient SAT solver by PROVER
Technologies (now part of Mathworks)

• Similar approach - observer based - to property expression
• (This approach aims to easy the work of the property

specifier, avoiding awkward logic notations)
• Far from a single push- button experiment. It is rather an

iterative process
• Insufficent support from the tools of this process
• Interpratation of counterexamples requires most effort
• Inability of the tools to supply several counterexamples
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System Safety
• Safety admits that a system fails with a non-critical failure
• Adoption of “safety nets” mechanism that avoid critical failure
• (often: hardware fault, software safety net)
• Modelling of the possible faulty behaviour of a system as:

• Safety = prove  AG ~ @FU
• (AGAX form;   AG fault condition => AX ~@FU)
• Counterexample:  path leading to the fail unsafe state

1

1

Operational step

Failed in a safe modeNon-critical fault

Failed in an unsafe mode
Critical fault
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   Quantitative  evaluation of Safety

• Probability that a system, working at time t0, is still safe (that is
still working, or ended up in a stable fail-safe state) at time t.

• To increase safety in case of a faut, it is normally needed to adopt
a fault detection mechainsm which can launch a procedure to bring
the system in a fail-safe state.

• There is however a non null probability that such detection
mechanism is not able to detect some faults, or that the procedure
cannot properly complete in a faluty condition.

• This is usually taken care of by recurring to a coverage measure,
which expresses the actual capability of the adopted fault
detection mechanisms and associated procedures to detect the
fault and act accordingly.
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Markov chain modeling Safety

• (add probabilities of fault to transitions of a state machine)
•  , = failure rate
• C = coverage

• Probabilistic model checking can be used to evaluate quantitative
safety properties

1

1

,
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PRISM
• Probabilistic model checker
• probabilistic models supported: discrete-time Markov chains

(DTMCs), continuous-time Markov chains (CTMCs) and Markov
decision processes (MDPs)

• property specification language incorporates the temporal logics
PCTL, CSL, LTL and PCTL*

• PRISM incorporates state-of-the art symbolic data structures and
algorithms, based on BDDs (Binary Decision Diagrams) and MTBDDs
(Multi-Terminal Binary Decision Diagrams)

• P<0.002 [F<=10000 “Fail_unsafe” ]
– The probability to have a critical failure before time = 1000 is less than

0.002
• Pmax=? [F<=10000 “Fail_unsafe” ]

– Evaluates the maximum probability that the system is in a fail_unsafe
state before time = 10000

Sep-30-10 SEFM School 2010 82

Model checking and the Safety Guidelines

• Safety guidelines have been issued in several safety critical
systems domains.

• Time of issue dating at the nineties (when model checking
was hardly leaving the research labs to the software
industry)

• Only mature technologies considered in guidelines for
safety-critical systems

• No surprise that model checking is never mentioned
• But formal methods are mentioned and even recommended



Sep-30-10 SEFM School 2010 83

Main Software Safety Guidelines

• Embedded systems: IEC 61508 - Functional Safety of
Electrical / Electronic / Programmable Electronic Safety-
related Systems

• Railway signalling: CENELEC EN 50128  -  Railway
Applications - Software For Railway Control And Protection
Systems

• Avionics: RTCA/DO-178 - Software Considerations in
Airborne Systems and Equipment Certification

• Military: MoD/DEF-STAN 00-55 - Requirements For Safety
Related Software in Defence Equipment
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SIL

• Safety Integrity Level
• Number ranging (e.g.) from 0 to 4: 4 indicates the higher

criticality, 0 gives no safety concern
• (DO178B: software development assurance level, ranging

from E (no safety effect) to A (catastrophic effect)
• SIL is a property of the system, related to the damage a

failure of the system can produce
• Apportioned to subsystems and functions at system level in

the preliminary safety assessment, it is assigned to
software functions (Software Safety Integrity Level)
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A definition of SIL, according to  EN 50129

Safety Integrity Level Alternative Descriptive Words

4 Very High Vital Critical Safety-critical Fail-safe

3 High Vital Critical Safety-critical High integrity

2 Medium Semi-
vital

Essential Safety-involved Medium
integrity

1 Low Semi-
vital

Essential Safety-involved Low integrity

0 Not specified Non-vital Non-
essential

Non-safety-
related

Non-safety
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Correspondance between safety quantitative requirements  and SIL,
according to DEF-STAN 00-55
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Concentrate on more safety critical software

• SIL apportionment allows software developmers to concentrate the
effort on those functions with higher SIL

• Put more effort in verification on higher SIL components
• EN50128/IEC61508 enumerates the development/verification

techniques that are mandatory/recommended/forbidden at each
SIL level

• DO178B requires different levels of structural coverage for unit
testing to different SILs

• Model checking could be used to address correctness of higher
SIL components, hence addressing the complexity in a divide and
conquer fashion

• However, SIL apportionment to software components is made
difficult since it requires independence of components (the failure
of one should not affect the correct functioning of th eother ones),
whcih is hard to prove.
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Def-Stan-00-55
Software 
Development cycle
(simplified)

Natural Language

Formalized

Modelization Phase

Software Requirements 
Document

Abstract model

Model Refinement

Source code

Possibly more steps of Refinement

Translation Phase

Functional test

Proof

Proof

Proof



Sep-30-10 SEFM School 2010 88

Def-Stan-00-55
Software 
Development cycle
(simplified)

Natural Language

Formalized

Modelization Phase

Software Requirements 
Document

Abstract model

Model Refinement

Source code

Possibly more steps of Refinement

Translation Phase

Functional test

Proof

Proof

Proof

Definition of
 proof obligations

 that should be discharged
to complete the proofs
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From DEF STAN 00-55

• The proof obligations for a particular formal method are the properties that the
designer is obliged to discharge in order to have assurance that the specification is
self consistent, or that a design correctly implements a specification (refinement).

• Refinement proofs are required to verify the first stage of the design against the
specification and to verify each subsequent design stage against the previous one.

• Manual generation of proof obligations is an extremely arduous and error prone task
and a more assured method is to use a proof obligation generator.

• Proof obligations are discharged using formal arguments. Formal arguments can be
constructed in two ways: by formal proof or by rigorous argument.

• A formal proof is strictly a well formed sequence of logical formulae such that each
formula can be deduced from formulae appearing earlier in the sequence or is one of
the fundamental building blocks (axioms) of the proof theory.

• Tools should be used to assist in the generation of formal proofs and checking of
formal proofs.
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• Proof obligations shall be:

a) constructed to verify that the code is a correct

refinement of the Software Design and does nothing that

is not specified;

b) discharged by means of formal argument.

 There is space for Model checking!!

From DEF STAN 00-55
 Formal verification
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EN50128
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Revision of EN50128
where Model Checking first appears!
(prEN 50128:2009 E - Draft for Enquiry)

• Model Checking appears as one of the paragraphs
within Formal Methods

• Formal Methods appear as one of the techniques
recommended for  the activities of: Software
Requirements Specification, Software
Development, Modelling (inherited by 50128)

• Still, Model Checking is not included among the
Formal Proof techniques
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DO178B review: DO178C
•  DO-178C nears finish line (Sep 1, 2010)
• Avionics for new aircraft such as the Boeing 787 Dreamliner

will be certified under DO-178C.
• After five years, RTCA and EUROCAE, the U.S. and

European avionics standards organizations, are nearing the
finish line in updating DO-178B, the bible for developers of
safety-critical software.

• A cast of 1,000-plus people have observed or participated in
the process and about 100 people show up at every meeting,
according to one member of RTCA Special Committee 205
(SC-205).

• The industry expects the final package -- DO-178C -- to be
released in the first quarter of 2011 and be mandated six to
nine months after ratification.
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DO 178C and Formal Methods
• DO-178B only mentioned Formal Methods among the “Addiotional

Considerations”
• DO-178C will, for the first time, officially recognize the validity of

using Formal Methods within the avionics software development
process.

• Subject to DO-178C guidelines, formal methods can be used to
augment or replace verification steps which must normally be
performed via DO-178B.

• Formal methods will be allowed to verify requirements correctness,
consistency, and augment reviews.

• DO-178C source code reviews can utilize formal methods,
particularly for auto-generated code (typically developed via Model
Based Development).

• Also, DO-178C will allow formal methods to verify or replace test
cases used to verify low level requirements and replace some forms
of testing via formal method based reviews.

•   (will Model Checking appear in the final text???)
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Tool qualification

• One of the issues that is raised in regulated
safety critical domains is:

• Is the model checker itself bug-free?
• Can I trust the model checker tool when it says

that a system is safe?
• The model checker itself should be programmed

following the same guidelines
• Which SIL should be assigned to a model checker?
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Tool Qualification, according to DO178B

Software tools are  classified as one of two
types:

• Software development tools:  Tools whose
output is part of airborne software and
thus can introduce errors.

• Software verification tools:  Tools that
cannot introduce errors, but may fail to
detect them.
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Qualification Criteria for Software Development Tools

• a. the software development processes for the tool should
satisfy the same objectives as the software development
processes of airborne software.

• b. The software level assigned to the tool should be the
same as that for the airborne software it produces, unless
the applicant can justify a reduction in software level of the
tool to the certification authority.

• c. The applicant should demonstrate that the tool complies
with its Tool Operational Requirements

• d. Software development tools should be verified to check
the correctness, consistency, and completeness of the Tool
Operational Requirements and to verify the tool against
those requirements
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Qualification Criteria for Software Verification Tools

• Demonstration that the tool complies with its Tool Operational
Requirements under normal operational conditions.

• Tool Operational Requirements;
– “A description of the tool’s functions and technical features”
– “User information, such as installation guides and user manuals”

•    Documented configuration management / development of tool
•    Independent quality assurance in tool development
•    Documented tests satisfying tool requirements
•    Tests that can be run on the tool deployed on the project

environment
•    Demonstration that use of the tool is controlled correctly on the

project

Sep-30-10 SEFM School 2010 99

Alternatives to qualification

• Only DO-178 qualified testing support tools exist, but no
model checker up to now (and to my knowledge) has been
qualified

• Proven in use concept:
– a tool that has a long record of usage within similar projects

with no known failure.
– Again, there is not a recorded long story of usage of a model

checker: up to now,this can be said only for applications of
Model Checking to hardware.

– Anyway, preference for mature tools
• Duplication and comparison: equal results from two mature

model checkers
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Conclusions   (has the promise been fulfilled?)
• Model Checking advantages more and more recognized in several safety-critical systems

domains
• However, still not routinely used
• Still problems of complexity, scalability, tool support and so on make MC at best appear as

a side validation possibility to achieve more confidence on what is developed
• Use of MC to find bugs more easily  vs.   use of MC to demonstrate safety (in fornt of ian

assessor)
• Need of industrial strength tools (although something is moving: see Design Verifier for

SCADE and for Stateflow)
• What about UML?    Increasing industrial interest, and MBD tools (Rhapsody): still no

commercial Model Checker
• Many areas still to be developed: interest in particular areas is domain-dependent
• No push-botton technology
• On the other hand, trend towards hidden MC engines in development tools.
• Model checking slowly slipping in safety critical systems development guidelines (anyway,

mentioning formal methods has apparently favoured more penetration of MC w.r.t.
unregualted domains, such as automotive)

• Next decade will probably see a fast growth in Model Checking application to safety
critical systems
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