
Types & Effects for
Secure Service Orchestration

Massimo Bartoletti
Gabriele Costa
Pierpaolo Degano
Gian-Luigi Ferrari
Roberto Zunino

Dipartimento di Informatica
Università di Pisa Pisa, 10.IX 2010 – SEFM school

Summary

  Overview
–  issues in secure service composition
–  security model: safety framings and policies
–  call-by-contract for service request
–  plans for secure orchestration

  A calculus for service composition
–  syntax and operational semantics
–  type & effect system

  Plans & Orchestration
–  constructions of plans and linearization
–  model-checking viable plans

Programming in a world of services

client

S3

S4

S1

S2

ℓ1

ℓ2

ℓ3

ℓ4

τ1

τ2

τ3

τ4

Programming in a world of services

client

S3

S4

S1

S2

ℓ1

ℓ2

ℓ3

ℓ4

τ1

τ2

τ3

τ4

service interface

service location

service
orchestration

service code

Traditional protection: firewalls

mail
server hacker

web
server

browser

file
server

ℓ1

ℓ2

ℓ3

ℓ4

Traditional protection: firewalls

mail
server hacker

web
server

browser

file
server

ℓ1

ℓ2

ℓ3

ℓ4

firewall

access
denied

Trojan horses

mail
server hacker

web
server

browser

file
server

ℓ1

ℓ2

ℓ3

ℓ4

firewall

applet
upload
applet

download
applet

read/write

Trojan horses

mail
server hacker

web
server

browser

file
server

ℓ1

ℓ2

ℓ3

ℓ4

firewall

applet

“Given a choice between
dancing pigs and security,
users will pick dancing pigs
everytime”
 [Edward Felten]

Trojan horses

mail
server hacker

web
server

browser

file
server

ℓ1

ℓ2

ℓ3

ℓ4
sandbox

applet

“Given a choice between
dancing pigs and security,
users will pick dancing pigs
everytime”
 [Edward Felten]

firewall

Security and service composition

  (At least) two kinds of security concerns:
–  secrecy of transmitted data, authentication, etc

(protocol analysis techniques, information theory …)
–  control on computational resources

(access control, resource usage analysis,
information flow control, …)

  need for linguistic mechanisms that:
–  work in a distributed setting
–  assume no (or weak) trust relations among services
–  can also cope with mobile code

Checklist for secure service composition

We want to devise a framework that:
  is expressive enough to model with real-world (although

simplified) scenarios
  allows for a formal characterization of what security

property is actually obtained, under a reasonable trusted
computing base

  is simple enough to allow for a clean formal treatment, and
for mechanical analysis tools

  deals with security from system design to implementation
  abstracts from technological biz

Client wants to protect from untrusted results

Security and service composition:
safety framings

client service
applet

Linguistic mechanism: safety framing

ϕ[applet] service
applet

The policy ϕ is enforced stepwise within its scope

Similarly, services want to protect from clients

Security and service composition:
safety framings

client service
result

(now the safety framing belongs to the service)

ϕ′[exec]
result

Scoped policies check the local execution histories

remote exec

remote exec

client

Call-by-name: request a given service among many

Security and service composition:
service selection

req S2 S2

Why S2 and not S1 or S3, if all functionally equivalent ?

S1

S3

Security and service composition:
service selection

Problems with “call by name ℓ”:

  what if named service S2 becomes unavailable ?
  …and if S2 is outperformed by S1 or S3 ?
  hard reasoning about non-functional properties of

services (e.g. security, quality of service)
  security level independent of the execution context

(unless hard-wired in the service code)

 From syntax-based to semantics-based invocation

Service names ℓ,ℓ′,.. tell me nothing about the behaviour!

Call-by-contract: request a service respecting

 the desired (abstract) behaviour τ

Security and service composition:
service selection

req S2

τ

S1

S3

only S1 is
guaranteed
to match the
behaviour τ

S1
τ1

τ2

τ3
τ

imposes both functional and non-functional constraints

Use cases for call-by-contract

Example: download an applet that obeys the policy ϕ

τ2) (τ1
ϕ[•]

Example: a remote executer that obeys the policy ϕ′

req τ0

τ2 τ1)
ϕ′[•] req (τ0

Observable behaviour

  access events are the actions relevant for
security (e.g. read/write local files, invoke/be
invoked by a given service, etc)
–  mechanically inferred, or inserted by programmer
–  their meaning is fixed globally (!?!?)
–  access events cannot be hidden

  the (abstract) behaviour observable by the
orchestrator over-approximates the histories,
i.e. the sequences of access events,
obtainable at run-time (type & effect system)

What kind of policies ?

  History-based security
  Policies ϕ are regular properties of event

histories (i.e. the language accepted by ϕ is
recognizable by finite state automata)

  Policies ϕ,ϕ′ have a local scope, possibly
nested ϕ[⋅⋅ϕ′[⋅⋅]⋅⋅]

  When the scope of ϕ is left, the history is not
required to obey ϕ any longer.

  Parametric policies ϕ(x,y,z) can be defined
through usage automata.

Example: the Chinese Wall policy

q0 q1 q2
αr αw

q2 offending state

αr αw

Aϕ

αw αr αw |≠ ϕ

ϕ Chinese Wall: cannot write αw after read αr (a file x)

*

Roadmap to call-by-contract

  We have defined:
–  the form of requests: req τ (funct. & non-funct. constraints)

–  the observable behaviour: event histories
–  the security policies ϕ, and their enforcement

mechanism Aϕ

–  local policies: ϕ[]
  What’s next:

–  service publication: ℓ{S}: τ

–  service orchestration: mapping req τ to ℓ

Service publication (1)

S2

S3

ℓ1{S1}: τ1 S1

τ1

ℓ2{S2}: τ2

ℓ1

ℓ2

ℓ3

τ2

? 1. infer τ3 from S3
2. mark S3 so to
prevent spoofing

Service publication (2)

S2

S3

ℓ1{S1}: τ1 S1

τ1

ℓ2{S2}: τ2

ℓ1

ℓ2

ℓ3

τ2

τ3

ℓ3{S3}: τ3

Service Repository –
some on the market

Service orchestration

S2

S3

ℓi{Si}: τi

S1

ℓ1

ℓ2

ℓ3

1. combine τ with the
τi to infer the abstract
behaviour H
2. extract from H a
viable plan π for ℓ0

reqr τ
π

ℓ0 H

Service orchestration

S2

S3

S1

ℓ1

ℓ2

ℓ3

reqr τ

ℓ0 H
Plan
π = r[ℓ2]

Names are only known by the
orchestrator! The only trusted entity!

What is a plan ?

  A plan drives the execution of an application, by
associating each service request with one (or more)
appropriate services

  With a viable plan:
–  executions never violate policies
–  there are no unresolved requests
–  you can then dispose from any execution monitoring!

  Many kinds of plans:
–  Simple: one service for each request
–  Multi-choice: more services for each request
–  Dependent: one service, and a continuation plan
–  …

Summing up…

  a calculus for secure service composition:
–  distributed services
–  safety framings for scoped policies on localized

execution histories
–  call-by-contract service invocation

  static orchestrator:
–  certifies the behavioural interfaces of services
–  provides a client with the viable plans driving

secure executions

What’s next

  calculus: syntax and operational semantics
  static semantics: type & effect system

–  types carry annotations H about service behaviour
–  effects are usages H, which over-approximate the

actual execution histories
  extracting viable plans:

–  linearization: unscrambling the structure of H
–  model checking: valid plans are viable

Services

e ::= x
 α
 if b then e else e′
 λzx.e
 e e′
 ϕ[e]
 reqr τ
 wait ℓ

variable
access event
conditional
abstraction
application
safety framing
service request
wait reply

Services

(only in configs)

Networks

N ::= ℓ{e:τ}: η, e′
 N || N′

published service

composition

location

running code

service code and
published interface

execution
history

ℓ4

Example: delegating code execution

f = reqr1()

reqr2(f)

λx.ϕ[αr;⋅⋅⋅]

αc;(λx.αr;⋅⋅;αw)

 αc; ϕ′[f()]

 f()

ℓ1

ℓ2

ℓ3

ℓ4

Example: delegating code execution

f = reqr1()

reqr2(f)

λx.ϕ[αr;⋅⋅⋅]

αc;(λx.αr;⋅⋅;αw)

 αc; ϕ′[f()]

 f()

use in certified
sites αc only

ℓ1

ℓ2

ℓ3

do not write αw
after a read αr

ℓ4

Executing a network of services

f = reqr1()

reqr2(f)

λx.ϕ[αr;⋅⋅⋅]

αc; (λx.αr;⋅⋅;αw)

αc; ϕ′[f()]

⋅⋅⋅ f() ⋅⋅⋅

ℓ1

ℓ2

ℓ3

π =

ℓ0

r1[ℓ2] r2[ℓ3] |

ℓ4

Executing a network of services

reqr2(f)

λx.ϕ[αr;⋅⋅⋅]

αc; (λx.αr;⋅⋅;αw)

αc; ϕ′[f()]

⋅⋅⋅ f() ⋅⋅⋅

ℓ1

ℓ2

ℓ3

π =

f = wait ℓ2

ℓ0

r1[ℓ2] r2[ℓ3] |

ε

ℓ4

Executing a network of services

reqr2(f)

λx.ϕ[αr;⋅⋅⋅] αc; ϕ′[f()]

⋅⋅⋅ f() ⋅⋅⋅

ℓ1

ℓ2

ℓ3

π =

f = wait ℓ2

ℓ0

λx.αr;⋅⋅⋅;αw

αc

r1[ℓ2] r2[ℓ3] |

ℓ4

Executing a network of services

λx.ϕ[αr;⋅⋅⋅] αc; ϕ′[f()]

⋅⋅⋅ f() ⋅⋅⋅

ℓ1

ℓ2

ℓ3

π =

f =
λx.αr;⋅⋅⋅;αw

ℓ0

r1[ℓ2] r2[ℓ3] |

wait ℓ3 αc; (λx.αr;⋅⋅;αw)

ε

ℓ4

Executing a network of services

λx.ϕ[αr;⋅⋅⋅]

αc; (λx.αr;⋅⋅;αw) ⋅⋅⋅ f() ⋅⋅⋅

ℓ1

ℓ2

ℓ3

π =

ℓ0

 ϕ′[αr;⋅⋅⋅; αw]

r1[ℓ2] r2[ℓ3] |

wait ℓ3

αc

ℓ4

Executing a network of services

λx.ϕ[αr;⋅⋅⋅]

αc; (λx.αr;⋅⋅;αw) ⋅⋅⋅ f() ⋅⋅⋅

ℓ1

ℓ2

ℓ3

π =

ℓ0

r1[ℓ2] r2[ℓ3] |

wait ℓ3

αc

ϕ′[αw]

αr

ℓ4

Executing a network of services

λx.ϕ[αr;⋅⋅⋅]

αc; (λx.αr;⋅⋅;αw) ⋅⋅⋅ f() ⋅⋅⋅

ℓ1

ℓ2

ℓ3

π =

ℓ0

r1[ℓ2] r2[ℓ3] |

wait ℓ3

αc

ϕ′[αw]

αr αw |≠ ϕ′

not viable!

Semantics of services (1)

[App1]

η, (λzx.e) v → η, e{v/x, λzx.e/z} [AbsApp]

η, e1 e2 → η′, e1′ e2

η,e1 → η′,e1′

[App2]

η, v e2 → η′, v e2′
η,e2 → η′,e2′

η, if b then etrue else efalse → η, eB(b)
[If]

Semantics of services (2)

η, ϕ[e] → η′, ϕ[e′]
η,e → η′,e′ η′ |= ϕ

η, α → ηα, ()
[Event]

[Framing In]

η, ϕ[v] → η, v
η |= ϕ

[Framing Out]

Semantics of networks (1)

 η, e → η′, e′

 ℓ: η, e →π ℓ: η′, e′

 N1 →π N1′

 N1 || N2 →π N1′ || N2

[Inject]

[Par]

Semantics of networks (2)

ℓ: η, reqr v || ℓ ′{e′}: ε,
 →π
ℓ: η, wait ℓ ′ || ℓ ′{e′}: ε, e′v

ℓ: η, wait ℓ ′ || ℓ ′{e′}: η′,v
 →π
ℓ: η, v || ℓ ′{e′}: ε,

[Request]

[Reply]

π = r[ℓ ′] | π′

Static semantics

 Type & effect system
–  types carry annotations H about service behaviour
–  effects, namely usages H, over-approximate the

actual execution histories

 Extracting viable plans
–  (linearization: unscrambling the structure of H)
–  model checking: valid plans are viable

References

  M. Bartoletti, P. Degano, G.L. Ferrari, R. Zunino: Secure Service
Orchestration. FOSAD’07, LNCS 2008

  M. Bartoletti, P. Degano, G.L. Ferrari, R. Zunino: Semantics-
based design for Secure Web Services. IEEE TSE 34, 2008

  M. Bartoletti, P. Degano, G.L. Ferrari, R. Zunino: Local policies for
resource usage analysis. ACM TOPLAS 31, 2009

  M. Bartoletti, P. Degano, G.L. Ferrari. Planning and verifying
Service Composition. JCS, 17, 2009

  M. Bartoletti, G. Costa, P. Degano, G.L. Ferrari, F. Martinelli, R.
Zunino: Securing Java with Local Policies. JOT 8, 2009

 www.di.unipi.it/~bartolet/pubs

