
1

Types & Effects for
Secure Service Orchestration

(Part 2)
The lambda-req framework

Massimo Bartoletti (Università di Cagliari)

Gabriele Costa (Università di Pisa, IIT-CNR Pisa)

Pierpaolo Degano (Università di Pisa)

Gian-Luigi Ferrari (Università di Pisa)

Roberto Zunino (Università di Trento)

2

In these slides

 Main ideas of the framework
 Focus on intuition
 Hints on our technical machinery
 Details may be neglected to help understanding

 ...even when they are actually needed to obtain
correct statements

 See the papers for those ;-)

3

Overview

network of services
~ programs

dynamic semantics
traces = event sequences

usage policies
type & effect system

type
effect

run-time checks

policy violations

model checking effects absence of policy violations

user-defined lambda-req machinery results

4

Programs

network of services
~ programs  Services ~ programs

 Programming/modelling language
 Based on lambda-calculus
 Evaluation order: Call-by-value
 Focus on resource access
 Effects (impurity)

5

Syntax

 Lambda calculus + resource access

Local policies: only applied to a code fragment

6

Example & Syntactic Sugar

 Let and ; can be defined as syntactic sugar
 Exercise: how?

7

Dynamic Semantics

 ”small-step” rules

we collect events here

when policies are respected,
the policy framing is transparent

8

Dynamic Semantics

 Note the special new(r) event
 Each dynamic resource creation is observable

policy violations
are detected here

new(r) event inserted here in the trace

9

Example: Semantics

10

Usage Policies

 Aim: define forbidden execution traces
 Usage Policy ~ Finite State Automata

 Regular language ?

 Policies are parametrized over resources
 Implicit universal quantification on parameters
 Not-so-regular

 Instantiation of parameters

11

Example: Policy

 Instatiation involves adding self loops

 The policy is independent from the execution trace

 The FSA depends on the resources which are in scope

 A policy can generate an unbounded number of FSA

 Instantiating the parameters
 Handling other resources in scope

12

Policy Violations

The following trace violates the policy

13

More about Local Policies

 Local Policies are not always to be enforced
 Minor semantics change: annotate

activation/deactivation in the trace as special events
 More about this later on

”violates” an inactive policy
= no actual violation

activation

14

Validity

 Usually, many policies are involved
 Valid trace = satisfies all the policies

15

Overview

network of services
~ programs

dynamic semantics
traces = event sequences

usage policies
type & effect system

type
effect

run-time checks

policy violations

model checking effects absence of policy violations

user-defined lambda-req machinery results

16

Types

 Mostly standard functional types
 Basic types (int, bool, …) and functions
 Important extension: resources

 Single resource type?
 No, use names to track resource data flow

basic types resources functions

17

Effects

 Our lambda calculus is impure (side effects are
allowed)

 Static semantics must conservatively
approximate side effects

 Latent effects: function types get effects as well

pure argument effectful resulttype+effect

18

Effects: syntax

 Effects = ”Usages” = abstract side effects
 A kind of simple process algebra with fresh

resource creation

19

Effects: semantics

 ”Small-step” style

20

The type system

21

Typing example

22

Correctness of Typing

 Assume
 program e has execution trace η
 program e is typable, with type τ and effect U

then
 trace η belongs to (the semantics of) U

 Fundamental property for verification
 If a trace of e violates policy φ then a trace of U

violates it as well
 (Note however that the converse does not hold, in

general – it's correct but not complete)

23

Overview

network of services
~ programs

dynamic semantics
traces = event sequences

usage policies
type & effect system

type
effect

run-time checks

policy violations

model checking effects absence of policy violations

user-defined lambda-req machinery results

24

Towards Model Checking Policies

 Given a usage U, we want to check whether
some trace of U violates a given policy φ

 Potential Issues
 Recursion allowed in usages U (not only tail-rec.)
 Non-determinism of U
 Usages can avoid termination
 Infinite traces are meaningful
 Dynamically created resources
 Local Policies (”is policy φ active now?”)

25

Framed Automata

 Inactive policies should not trigger violations
 If we are not within φ[…] the policy φ must not be

checked

 Two-layered automata; events [φ and]φ toggle
layer

26

Local policies and recursion

 Problem: policy framings can nest! (in non
trivial ways)

generates
 Non-regularity: framed automata can not cope

with that (can not match ”parentheses”)
 Regularization: Transformation from U to U' to

”remove” nested redundant policy framings
 Redundant = do not affect validity in the

tranformation

27

Regularization: the idea

 Idea: w.r.t. validity
 Take

unfold the recursion removing redundancies

 Generates the same traces, without nestings
 Correct & complete w.r.t. validity

28

Regularization: the general case

 Exercise: define the general transformation
 Very easy... to get wrong!
 Watch out for:

 nested recursion
 nesting of distinct policies
 ”mixed” recursion

29

From Infinite to Finite

 We should check for an unbounded amount of
instantiated automata over dynamic resources
 We can not afford infiniteness

 Fact: a violation involves at most
#parameters+1 resources
 Intuition: a policy can not distinguish between

resources which are not bound to one parameter

 Idea: pick a finite number of ”witnesses”
resources #1 … #k and instantiate the policy on
these, only
 Leads to a finite number of instantiations

30

Using witnesses

 Automata can be instatianted on witnesses...
 ...but usages U can create fresh resources!

 Example:

 Transform U, replacing each (νx) with a finite
choice over witnesses
 Problem: we have recursion, so the same witness

can be ”freshly” generated twice!
 Yet, leads to a correct transformation (i.e. does not

remove violations)
 Not complete, though (i.e. can introduce violations)

31

Correctness of witnesses

 Why picking witnesses #i is correct?
 Assume a trace η violates φ
 There is some instantiation φ(r1,r2) which is led

to failure by η
 It is easy to check that φ(#1,#2) is led to failure

by η{r1 → #1, r2 → #2, others → _ }
 A policy can not distinguish among ”others”, so we

can safely collapse them as a single resource _

 If the latter is a trace of the transformed U, then
the transformation will not remove violations
(i.e. it is correct) – and indeed it is

32

Completeness of witnesses

 Does not hold: exercise ;-)

33

Transformation into BPA

 Towards checking validity of U...
 BPA: basic process algebras

 pairs <process, set of definitions>

 ~ context-free grammars (for our purposes)
 No μh for recursion ; use recursive definitions

instead

 Why BPAs?
 Known model-checking techniques

34

Transformation into BPA

 The ”simple” cases first: no (νx)

35

Transformation into BPA

 The naïve approach to (νx)

 Exercise:
 Compute the complexity of the transformation as a

function of |W| and |U|

 Each (νx) causes |W|+1 recursive calls
 Complexity is roughly
 |U| is large, |W| is small, so this is EXP

set of witnesses #1 .. #k

36

Transformation into BPA

 A better approach to (νx)

 Exercise: complexity=?
 Roughly,
 This is POLY, if |W| is O(1)

remove ”already used” witnesses

37

Recovering Completeness

 So far the technique is still incomplete
 Example: incompleteness
 φ = ”never a(y) twice on the same y”

 U respects φ, B(U) does not

38

Recovering Completeness

 Fact: in any trace, the event new(r) occurs
before any other event α(r), for each dynamic r

 Trivial for program traces (by construction)
 Could not apply to all traces of U but...

 ...such traces can safely be ignored, just because
they are not program traces

 Restricting to the ”new-before-others” traces:
 we can similarly ignore traces having multiple new

events for the same resource r
 this holds even for r=#

39

Recovering Completeness

 Consider the previous example (now with new)

 Filtering out ”multiple-new” traces we get

which precisely corresponds to non-
deterministically picking one of the dynamic
resources to be the witness

 This is what we need to be correct & complete

40

Correctness, again

 If there is some violating program trace η
 Type Correctness implies that η is also

generated by the effect U
 η has no multiple-news, satisfies “new-before-

others” – so it is not filtered out
 w.l.o.g. the violation is caused by #1 .. #k
 The “filtered” traces of B(U) still show the

violation

41

Completeness

 If a filtered trace of B(U) violates a policy φ
 A trace η of B(U) violates φ
 η is the result of “collapsing” a trace η' of U

using witnesses #1..#k (and _)
 η' of U violates φ
 Note: there is no guaranteed violation in

program traces, since the type system is not
complete

42

How to filter out traces from U?

 We don't actually filter out traces from B(U)
 Rather, we change the policy automaton φ
 On a ”multiple-new” trace, we make the

automaton to reach a non-failure sink state
 Similarly for ”others-before-new” traces
 Technique: define automaton A# to accept

these traces, then use a weak until operator W
 φ' = φ W A#

43

Summing Up: the whole algorithm

 Take the effect U, and regularize it

 For each policy φ mentioned in U, count the number of
parameters and use that many witnesses

 Compute φ' = φ W A# , and instantiate it in each possible
way on witnesses

 Compute B(U) using the witnesses

 Using standard techniques, intersect the languages of

 B(U) – a context-free language
 φ' – a regular language (defining violations)

 That is empty iff no trace of U causes a violation

 In that case, no program traces causes violations as well

44

An implementation

 LocUsT stands for ”Local Usages Tool”
 Inputs:

 Usage U
 Policy φ

 Output:
 Whether some trace of U violates φ

45

LocUsT inside

Policy Usage

regularization

instantiation nu-elimination

conversion to BPA~CFGframing

empty intersection?U valid U not valid
yes no

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

