Types & Effects for
Secure Service Orchestration

Massimo Bartoletti
Gabriele Costa
Pierpaolo Degano
Gian-Luigi Ferrari
Roberto Zunino

Pisa, 10.IX 2010 — SEFM school

e Overview
— issues in secure service composition
- security model: safety framings and policies
- call-by-contract for service request
- plans for secure orchestration

e A calculus for service composition
- syntax and operational semantics
— type & effect system

e Plans & Orchestration
— constructions of plans and linearization
— model-checking viable plans

Programming in a world of services

Programming in a world of services

service location

}rvice interface

service

orchestration

Traditional protection: firewalls

¢
Z

web
server

Traditional protection: firewalls

firewall

‘——-——
.
.
.
.
.
.
.
.
.
.
.

.

““
““
.

€, Z
"""" access
""" denied web
server

Trojan horses

firewall

““
““
.

L 4
...
Y

download
applet

server

Trojan horses

firewall

“Given a choice between
dancing pigs and security,
users will pick dancing pigs

everytime”
[Edward Felten]

server

Trojan horses

browser

EEEEEEER
h‘ v

: applet:

YpEEEEEEER

firewall

“Given a choice between
dancing pigs and security,
users will pick dancing pigs

everytime”
[Edward Felten]

server

Security and service composition
« o

e (At least) two kinds of security concerns:

— secrecy of transmitted data, authentication, etc
(protocol analysis techniques, information theory ...)

— control on computational resources
(access control, resource usage analysis,
information flow contral, ...)

e need for linguistic mechanisms that:
— work in a distributed setting
- assume no (or weak) trust relations among services
— can also cope with mobile code

Checklist for secure service composition
-—]

We want to devise a framework that:
e is expressive enough to model with real-world (although
simplified) scenarios

e allows for a formal characterization of what security
property is actually obtained, under a reasonable trusted
computing base

e is simple enough to allow for a clean formal treatment, and
for mechanical analysis tools

e deals with security from system design to implementation
e abstracts from technological biz

Security and service composition:
safety framings

Client wants to protect from untrusted results

The policy @ is enforced stepwise within its scope

Security and service composition:
safety framings

Similarly, services want to protect from clients

remote exec
m D ¢'[exec]
result

Scoped policies check the local execution histories

Security and service composition:
service selection

Call-by-name: request a given service among many

Why S2 and not S1 or S3, if all functionally equivalent ?

Security and service composition:
service selection

”,

Problems with “call by name

e what if named service S2 becomes unavailable ?
e ...and if S2 is outperformed by S1 or S3 ?

e hard reasoning about non-functional properties of
services (e.g. security, quality of service)

e security level independent of the execution context
(unless hard-wired in the service code)

From syntax-based to semantics-based invocation

Service names tell me nothing about the behaviour!

Security and service composition:
service selection

Call-by-contract: request a service respecting

the desired (abstract) behaviour T

only IS
guaranteed

to match the

behaviour

T imposes both functional and non-functional constraints

Use cases for call-by-contract

Example: download an applet that obeys the policy ¢

req TO > (1:1 CP[']

>1‘:2)

Example: a remote executer that obeys the policy ¢’

req (T, > Ty) vl > T2

Observable behaviour
-

e access events are the actions relevant for
security (e.g. read/write local files, invoke/be
invoked by a given service, etc)

- mechanically inferred, or inserted by programmer
— their meaning is fixed globally (17?1?)
— access events cannot be hidden

e the (abstract) behaviour observable by the
orchestrator over-approximates the histories,
l.e. the sequences of access events,
obtainable at run-time (type & effect system)

What kind of policies ?
"

e History-based security

e Policies ¢ are regular properties of event
histories (i.e. the language accepted by @ is
recognizable by finite state automata)

e Policies ¢,¢’ have a local scope, possibly
nested (p[..cp’[..]..]

e \When the scope of o is left, the history is not
required to obey @ any longer.

e Parametric policies o(x,y,z) can be defined
through usage automata.

Example: the Chinese Wall policy

@ Chinese Wall: cannot write o, after read a., (a file x)

g2 offending state

Oty Oy Oty [# @

Roadmap to call-by-contract

S
e \We have defined:

- the form of requests: req T (funct. & non-funct. constraints)
-~ the observable behaviour: event histories

— the security policies ¢, and their enforcement
mechanism A

— local policies: @[|
e \What's next:

— service publication: £{S}: T

— service orchestration: mapping req T to

Service publication (1)

1. infer . from

2. mark so to
prevent spoofing

Service publication (2)

2.{S3}: 1,

Service Repository —
some on the market

Service orchestration

1. combine © with the
to infer the

2. extract from |- a
viable plan m for

Service orchestration

Names are only known by the
orchestrator! The only trusted entity!

What is a plan ?
c—————

o A drives the execution of an application, by
associating each service request with one (or more)
appropriate services

e With a ;
— executions never violate policies
— there are no unresolved requests
- you can then dispose from any execution monitoring!

e Many kinds of plans:
— : one service for each request

- Multi-choice: more services for each request
- Dependent: one service, and a continuation plan

Summing up...

e a calculus for secure service composition:

— distributed services

- safety framings for scoped policies on localized
execution histories

— call-by-contract service invocation

e static orchestrator:
- certifies the behavioural interfaces of services

— provides a client with the viable plans driving
secure executions

What’s next

e calculus: syntax and operational semantics

e static semantics: type & effect system
— types carry annotations H about service behaviour

- effects are usages H, which over-approximate the
actual execution histories

e extracting viable plans:
— linearization: unscrambling the structure of H
- model checking: valid plans are viable

Services

Services e ::= X

(only in configs)

o
if b then e else e’

A X.e
ee'
¢le]
req, T
wait £

variable

access event
conditional
abstraction
application
safety framing
service request
walit reply

Networks

service code and
published interface

N ::= &{e:t}:n, € published service

composition

running code

execution
history

Example: delegating code execution

€;

Example: delegating code execution

use in certified
sites only

do not write

after a read

Executing a network of services

€;

=] | o]

Executing a network of services

€;

= r[8] | ol

Executing a network of services

g
€,

= rqy[€;] | ryfts]

Executing a network of services

oy @'[f()]

E

= b][]

Executing a network of services

= rq[t] | rpl€s]

Executing a network of services

= rq[t] | rpl€s]

Executing a network of services

T = r1[£2] |r2[€3] not viable!

Semantics of services (1)

[App1] [App2]
- N\ A
'rl,e1 —> 7]’,91' 7],92 - 7]'592'

kn, e1 ez — n’, e1' e2) kn, v ez —_— .«rl', V ezf

[AbsApp] [n, (A x.€) v — 1, e{v/x, A\, x.e/z}]

[1f] [n, if b then e else ey, — M, ez,]

Semantics of services (2)

[Event]
|, 0~ na, ()]

[Framing Out]

[Framing In}

(

(

.

nil=oe

n, ¢[vl = n, v

.

~

ne—=n,e n|=gp

n, ple] = n’, ple’]

Semantics of networks (1)

~
Ny =, Ny

N, || Ny =, Ny || N, Y

Semantics of networks (2)

[Request] n=r[€'] |~
e: n, req, v || €'{e'}: g, * A
\2: n, wait €' || €'{e'}: ¢, e’v)
[Reply]
(e, waite’ || € ey
; '{e'}: g, X
Cemv o llefefe x

Static semantics

e Type & effect system
— types carry annotations H about service behaviour
- effects, namely usages H, over-approximate the
actual execution histories
e Extracting viable plans
— (linearization: unscrambling the structure of H)
- model checking: valid plans are viable

References

M. Bartoletti, P. Degano, G.L. Ferrari, R. Zunino: Secure Service
Orchestration. FOSAD’07, LNCS 2008

e M. Bartoletti, P. Degano, G.L. Ferrari, R. Zunino: Semantics-
based design for Secure Web Services. IEEE TSE 34, 2008

e M. Bartoletti, P. Degano, G.L. Ferrari, R. Zunino: Local policies for
resource usage analysis. ACM TOPLAS 31, 2009

e M. Bartoletti, P. Degano, G.L. Ferrari. Planning and verifying
Service Composition. JCS, 17, 2009

e M. Bartoletti, G. Costa, P. Degano, G.L. Ferrari, F. Martinelli, R.
Zunino: Securing Java with Local Policies. JOT 8, 2009

www.di.unipi.it/~bartolet/pubs

