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In these slides

 Main ideas of the framework
 Focus on intuition
 Hints on our technical machinery
 Details may be neglected to help understanding

 ...even when they are actually needed to obtain 
correct statements

 See the papers for those ;-) 
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Overview

network of services
~ programs

dynamic semantics
traces = event sequences

usage policies
type & effect system

type 
effect

run-time checks

policy violations

model checking effects absence of policy violations

user-defined lambda-req machinery results
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Programs

network of services
~ programs  Services ~ programs

 Programming/modelling language
 Based on lambda-calculus
 Evaluation order: Call-by-value
 Focus on resource access
 Effects (impurity)
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Syntax

 Lambda calculus + resource access

Local policies: only applied to a code fragment
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Example & Syntactic Sugar

 Let and ; can be defined as syntactic sugar
 Exercise: how?
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Dynamic Semantics

 ”small-step” rules

we collect events here

when policies are respected,
the policy framing is transparent
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Dynamic Semantics

 Note the special new(r) event
 Each dynamic resource creation is observable

policy violations 
are detected here

new(r) event inserted here in the trace
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Example: Semantics



10

Usage Policies

 Aim: define forbidden execution traces
 Usage Policy               ~ Finite State Automata

 Regular language ?

 Policies are parametrized over resources
 Implicit universal quantification on parameters
 Not-so-regular

 Instantiation of parameters
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Example: Policy

 Instatiation involves adding self loops

 The policy is independent from the execution trace

 The FSA depends on the resources which are in scope

 A policy can generate an unbounded number of FSA

 Instantiating the parameters
 Handling other resources in scope
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Policy Violations

The following trace violates the policy
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More about Local Policies

 Local Policies are not always to be enforced
 Minor semantics change: annotate 

activation/deactivation in the trace as special events
 More about this later on

”violates” an inactive policy
= no actual violation

activation
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Validity

 Usually, many policies are involved
 Valid trace = satisfies all the policies
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Types

 Mostly standard functional types
 Basic types (int, bool, …) and functions
 Important extension: resources

 Single resource type?
 No, use names to track resource data flow

basic types resources functions
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Effects

 Our lambda calculus is impure (side effects are 
allowed)

 Static semantics must conservatively 
approximate side effects

 Latent effects: function types get effects as well

pure argument effectful resulttype+effect
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Effects: syntax

 Effects = ”Usages” = abstract side effects
 A kind of simple process algebra with fresh 

resource creation
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Effects: semantics

 ”Small-step” style
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The type system
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Typing example
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Correctness of Typing

 Assume
 program e has execution trace η
 program e is typable, with type τ and effect U

then
 trace η belongs to (the semantics of) U

 Fundamental property for verification
 If a trace of e violates policy φ then a trace of U 

violates it as well
 (Note however that the converse does not hold, in 

general – it's correct but not complete)
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Towards Model Checking Policies

 Given a usage U, we want to check whether 
some trace of U violates a given policy φ

 Potential Issues
 Recursion allowed in usages U (not only tail-rec.)
 Non-determinism of U
 Usages can avoid termination
 Infinite traces are meaningful
 Dynamically created resources
 Local Policies (”is policy φ active now?”)
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Framed Automata

 Inactive policies should not trigger violations
 If we are not within φ[ … ] the policy φ must not be 

checked

 Two-layered automata; events [φ and ]φ toggle 
layer
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Local policies and recursion

 Problem: policy framings can nest! (in non 
trivial ways)

generates 
 Non-regularity: framed automata can not cope 

with that (can not match ”parentheses”)
 Regularization: Transformation from U to U' to 

”remove” nested redundant policy framings
 Redundant = do not affect validity in the 

tranformation
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Regularization: the idea

 Idea: w.r.t. validity
 Take

unfold the recursion removing redundancies

 Generates the same traces, without nestings
 Correct & complete w.r.t. validity



28

Regularization: the general case

 Exercise: define the general transformation
 Very easy... to get wrong!
 Watch out for:

 nested recursion
 nesting of distinct policies
 ”mixed” recursion
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From Infinite to Finite

 We should check for an unbounded amount of 
instantiated automata over dynamic resources
 We can not afford infiniteness

 Fact: a violation involves at most 
#parameters+1 resources
 Intuition: a policy can not distinguish between 

resources which are not bound to one parameter

 Idea: pick a finite number of ”witnesses” 
resources #1 … #k and instantiate the policy on 
these, only
 Leads to a finite number of instantiations
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Using witnesses

 Automata can be instatianted on witnesses...
 ...but usages U can create fresh resources!

 Example:

 Transform U, replacing each (νx) with a finite 
choice over witnesses
 Problem: we have recursion, so the same witness 

can be ”freshly” generated twice!
 Yet, leads to a correct transformation (i.e. does not 

remove violations)
 Not complete, though (i.e. can introduce violations)
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Correctness of witnesses

 Why picking witnesses #i is correct?
 Assume a trace η violates φ
 There is some instantiation φ(r1,r2) which is led 

to failure by η
 It is easy to check that φ(#1,#2) is led to failure 

by η{r1 → #1, r2 → #2, others → _ }
 A policy can not distinguish among ”others”, so we 

can safely collapse them as a single resource _

 If the latter is a trace of the transformed U, then 
the transformation will not remove violations 
(i.e. it is correct) – and indeed it is
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Completeness of witnesses

 Does not hold: exercise ;-)
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Transformation into BPA

 Towards checking validity of U...
 BPA: basic process algebras

 pairs <process, set of definitions>

 ~ context-free grammars (for our purposes)
 No μh for recursion ; use recursive definitions 

instead

 Why BPAs?
 Known model-checking techniques
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Transformation into BPA

 The ”simple” cases first: no (νx)
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Transformation into BPA

 The naïve approach to (νx)

 Exercise:
 Compute the complexity of the transformation as a 

function of |W| and |U|

 Each (νx) causes |W|+1 recursive calls
 Complexity is roughly
 |U| is large, |W| is small, so this is EXP

set of witnesses #1 .. #k
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Transformation into BPA

 A better approach to (νx)

 Exercise: complexity=?
 Roughly, 
 This is POLY, if |W| is O(1)

remove ”already used” witnesses
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Recovering Completeness

 So far the technique is still incomplete
 Example: incompleteness
 φ = ”never a(y) twice on the same y”

 U respects φ, B(U) does not
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Recovering Completeness

 Fact: in any trace, the event new(r) occurs 
before any other event α(r), for each dynamic r

 Trivial for program traces (by construction)
 Could not apply to all traces of U but...

 ...such traces can safely be ignored, just because 
they are not program traces

 Restricting to the ”new-before-others” traces:
 we can similarly ignore traces having multiple new 

events for the same resource r
 this holds even for r=#
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Recovering Completeness

 Consider the previous example (now with new)

 Filtering out ”multiple-new” traces we get

which precisely corresponds to non-
deterministically picking one of the dynamic 
resources to be the witness

 This is what we need to be correct & complete
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Correctness, again

 If there is some violating program trace η
 Type Correctness implies that η is also 

generated by the effect U
 η has no multiple-news, satisfies “new-before-

others” – so it is not filtered out
 w.l.o.g. the violation is caused by #1 .. #k
 The “filtered” traces of B(U) still show the 

violation
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Completeness

 If a filtered trace of B(U) violates a policy φ
 A trace η of B(U) violates φ
 η is the result of “collapsing” a trace η' of U 

using witnesses #1..#k (and _)
 η' of U violates φ
 Note: there is no guaranteed violation in 

program traces, since the type system is not 
complete
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How to filter out traces from U?

 We don't actually filter out traces from B(U)
 Rather, we change the policy automaton φ 
 On a ”multiple-new” trace, we make the 

automaton to reach a non-failure sink state
 Similarly for ”others-before-new” traces
 Technique: define automaton A# to accept 

these traces, then use a weak until operator W
 φ' = φ W A#
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Summing Up: the whole algorithm

 Take the effect U, and regularize it

 For each policy φ mentioned in U, count the number of 
parameters and use that many witnesses

 Compute φ' = φ W A# , and instantiate it in each possible 
way on witnesses

 Compute B(U) using the witnesses

 Using standard techniques, intersect the languages of

 B(U) – a context-free language
 φ' – a regular language (defining violations)

 That is empty iff no trace of U causes a violation

 In that case, no program traces causes violations as well



44

An implementation

 LocUsT stands for ”Local Usages Tool”
 Inputs:

 Usage U
 Policy φ 

 Output:
 Whether some trace of U violates φ
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LocUsT inside

Policy Usage

regularization

instantiation nu-elimination

conversion to BPA~CFGframing

empty intersection?U valid U not valid
yes no
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