
Formal Methods
for

Computer System Design and Analysis

Diego Latella
(http://www.isti.cnr.it/People/D.Latella)

Consiglio Nazionale delle Ricerche
Ist. di Scienza e Tecnologie dell’Informazione “A. Faedo”

Formal Methods && Tools Lab

SEFM 2010

These slides are available at: http://www.sefm2010.isti.cnr.it/school/docs/introduction and motivations latella.pdf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 1 / 113

Outline

1 Background

Engineering tradition;
(Notations for) Design Specifications;
(Notations for) Requirement Specifications;

2 Formal Methods for System Engineering;

3 Example: Process Algebraic approach to System Modelling;

4 Example: Temporal Logic approach to System Requirement
Specification

and Model-checking;

5 Success Stories;

6 Extensions;

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 2 / 113

Outline

1 Background

Engineering tradition;
(Notations for) Design Specifications;
(Notations for) Requirement Specifications;

2 Formal Methods for System Engineering;

3 Example: Process Algebraic approach to System Modelling;

4 Example: Temporal Logic approach to System Requirement
Specification

and Model-checking;

5 Success Stories;

6 Extensions;

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 2 / 113

Outline

1 Background

Engineering tradition;

(Notations for) Design Specifications;
(Notations for) Requirement Specifications;

2 Formal Methods for System Engineering;

3 Example: Process Algebraic approach to System Modelling;

4 Example: Temporal Logic approach to System Requirement
Specification

and Model-checking;

5 Success Stories;

6 Extensions;

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 2 / 113

Outline

1 Background

Engineering tradition;
(Notations for) Design Specifications;

(Notations for) Requirement Specifications;

2 Formal Methods for System Engineering;

3 Example: Process Algebraic approach to System Modelling;

4 Example: Temporal Logic approach to System Requirement
Specification

and Model-checking;

5 Success Stories;

6 Extensions;

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 2 / 113

Outline

1 Background

Engineering tradition;
(Notations for) Design Specifications;
(Notations for) Technical Specifications;

2 Formal Methods for System Engineering;

3 Example: Process Algebraic approach to System Modelling;

4 Example: Temporal Logic approach to System Requirement
Specification

and Model-checking;

5 Success Stories;

6 Extensions;

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 2 / 113

Outline

1 Background

Engineering tradition;
(Notations for) Design Specifications;
(Notations for) Requirement Specifications;

2 Formal Methods for System Engineering;

3 Example: Process Algebraic approach to System Modelling;

4 Example: Temporal Logic approach to System Requirement
Specification

and Model-checking;

5 Success Stories;

6 Extensions;

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 2 / 113

Outline

1 Background

Engineering tradition;
(Notations for) Design Specifications;
(Notations for) Requirement Specifications;

2 Formal Methods for Software Engineering;

3 Example: Process Algebraic approach to System Modelling;

4 Example: Temporal Logic approach to System Requirement
Specification

and Model-checking;

5 Success Stories;

6 Extensions;

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 2 / 113

Outline

1 Background

Engineering tradition;
(Notations for) Design Specifications;
(Notations for) Requirement Specifications;

2 Formal Methods for System Engineering;

3 Example: Process Algebraic approach to System Modelling;

4 Example: Temporal Logic approach to System Requirement
Specification

and Model-checking;

5 Success Stories;

6 Extensions;

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 2 / 113

Outline

1 Background

Engineering tradition;
(Notations for) Design Specifications;
(Notations for) Requirement Specifications;

2 Formal Methods for System Engineering;

3 Example: Process Algebraic approach to System Modelling;

4 Example: Temporal Logic approach to System Requirement
Specification

and Model-checking;

5 Success Stories;

6 Extensions;

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 2 / 113

Outline

1 Background

Engineering tradition;
(Notations for) Design Specifications;
(Notations for) Requirement Specifications;

2 Formal Methods for System Engineering;

3 Example: Process Algebraic approach to System Modelling;

4 Example: Temporal Logic approach to System Requirement
Specification

and Model-checking;

5 Success Stories;

6 Extensions;

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 2 / 113

Outline

1 Background

Engineering tradition;
(Notations for) Design Specifications;
(Notations for) Requirement Specifications;

2 Formal Methods for System Engineering;

3 Example: Process Algebraic approach to System Modelling;

4 Example: Temporal Logic approach to System Requirement
Specification and Model-checking;

5 Success Stories;

6 Extensions;

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 2 / 113

Outline

1 Background

Engineering tradition;
(Notations for) Design Specifications;
(Notations for) Requirement Specifications;

2 Formal Methods for System Engineering;

3 Example: Process Algebraic approach to System Modelling;

4 Example: Temporal Logic approach to System Requirement
Specification and Model-checking;

5 Success Stories;

6 Extensions;

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 2 / 113

Outline

1 Background

Engineering tradition;
(Notations for) Design Specifications;
(Notations for) Requirement Specifications;

2 Formal Methods for System Engineering;

3 Example: Process Algebraic approach to System Modelling;

4 Example: Temporal Logic approach to System Requirement
Specification and Model-checking;

5 Success Stories;

6 Extensions;

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 2 / 113

WARNING!!

This presentation is

tutorial

informal

not always rigorous

, and

quite incomplete !!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 3 / 113

WARNING!!

This presentation is

tutorial

informal

not always rigorous

, and

quite incomplete !!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 3 / 113

WARNING!!

This presentation is

tutorial

informal

not always rigorous

, and

quite incomplete !!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 3 / 113

WARNING!!

This presentation is

tutorial

informal

not always rigorous

, and

quite incomplete !!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 3 / 113

WARNING!!

This presentation is

tutorial

informal

not always rigorous

, and

quite incomplete !!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 3 / 113

WARNING!!

This presentation is

tutorial

informal

not always rigorous, and

quite incomplete !!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 3 / 113

Background - Engineering

“All engineering disciplines make progress by employing
mathematically based notations and methods.”

[C. Jones 2000]

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 4 / 113

Background - Engineering - Notations
Graphical

c©M. Mazzoleni, L. Jurina “PONTI IN MURATURA: DIFETTI E PATOLOGIE”, CIAS 2006, Bolzano

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 5 / 113

Background - Engineering - Notations
Graphical

From: c©Philips

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 6 / 113

Background - Engineering - Notations
Graphical

I

C

L

R

V

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 7 / 113

Background - Engineering - Notations

Basic components

e.g. Resistors, Inductances, Capacitors

Ways for composing them

e.g. SERIES, PARALLEL

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 8 / 113

Background - Engineering - Notations

Basic components
e.g. Resistors, Inductances, Capacitors

Ways for composing them

e.g. SERIES, PARALLEL

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 8 / 113

Background - Engineering - Notations

Basic components
e.g. Resistors, Inductances, Capacitors

Ways for composing them
e.g. SERIES, PARALLEL

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 8 / 113

Background - Engineering - Notations

Graphical and Textual

I

C

L

R

V

circuit definition:

CIRCUIT RLC (xv , xr , xl , xc)
∆
=

CONNECT (xv , SERIES (RES(xr), IND(xl), CAP(xc)))

circuit use (instantiation):

RLC(V,R,L,C)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 9 / 113

Background - Engineering - Notations
Graphical

and Textual

I

C

L

R

V

circuit definition:

CIRCUIT RLC (xv , xr , xl , xc)
∆
=

CONNECT (xv , SERIES (RES(xr), IND(xl), CAP(xc)))

circuit use (instantiation):

RLC(V,R,L,C)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 9 / 113

Background - Engineering - Notations
Graphical and Textual

I

C

L

R

V

circuit definition:

CIRCUIT RLC (xv , xr , xl , xc)
∆
=

CONNECT (xv , SERIES (RES(xr), IND(xl), CAP(xc)))

circuit use (instantiation):

RLC(V,R,L,C)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 9 / 113

Background - Engineering - Notations
Graphical and Textual

I

C

L

R

V

circuit definition:

CIRCUIT RLC (xv , xr , xl , xc)
∆
=

CONNECT (xv , SERIES (RES(xr), IND(xl), CAP(xc)))

circuit use (instantiation):

RLC(V,R,L,C)
c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 9 / 113

Background - Engineering - Notations

Mathematically based Notations

Rigorous (Formal) Syntax

- (International) Standards for graphical notations

-
√

75 + : z
0

Rigorous (Formal) Semantics

- Set Theory, Relations and Functions
- Continuous Mathematics

- Metric Spaces
- Differential Calculus and Function Analysis
- Linear Algebra
- Differential Equations

- Mathematical Logic
- ... and much more!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 10 / 113

Background - Engineering - Notations

Mathematically based Notations

Rigorous (Formal) Syntax

- (International) Standards for graphical notations

-
√

75 + : z
0

Rigorous (Formal) Semantics

- Set Theory, Relations and Functions
- Continuous Mathematics

- Metric Spaces
- Differential Calculus and Function Analysis
- Linear Algebra
- Differential Equations

- Mathematical Logic
- ... and much more!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 10 / 113

Background - Engineering - Notations

Mathematically based Notations

Rigorous (Formal) Syntax

- (International) Standards for graphical notations

-
√

75 + : z
0

Rigorous (Formal) Semantics

- Set Theory, Relations and Functions
- Continuous Mathematics

- Metric Spaces
- Differential Calculus and Function Analysis
- Linear Algebra
- Differential Equations

- Mathematical Logic
- ... and much more!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 10 / 113

Background - Engineering - Notations

Mathematically based Notations

Rigorous (Formal) Syntax

- (International) Standards for graphical notations

-
√

75 + : z
0

Rigorous (Formal) Semantics

- Set Theory, Relations and Functions
- Continuous Mathematics

- Metric Spaces
- Differential Calculus and Function Analysis
- Linear Algebra
- Differential Equations

- Mathematical Logic
- ... and much more!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 10 / 113

Background - Engineering - Notations

Mathematically based Notations

Rigorous (Formal) Syntax

- (International) Standards for graphical notations

-
√

75 + : z
0

Rigorous (Formal) Semantics

- Set Theory, Relations and Functions
- Continuous Mathematics

- Metric Spaces
- Differential Calculus and Function Analysis
- Linear Algebra
- Differential Equations

- Mathematical Logic
- ... and much more!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 10 / 113

Background - Engineering - Notations

Mathematically based Notations

Rigorous (Formal) Syntax

- (International) Standards for graphical notations

-
√

75 + : z
0

Rigorous (Formal) Semantics

- Set Theory, Relations and Functions
- Continuous Mathematics

- Metric Spaces
- Differential Calculus and Function Analysis
- Linear Algebra
- Differential Equations

- Mathematical Logic
- ... and much more!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 10 / 113

Background - Engineering - Notations
Semantics: abstract definitions

I

C

L

R

V
RLC (V, R, L, C)

Using the Laws of Physics (Kirchhoff Voltages Law) we can give an
abstract and rigorous description of the relationship between the
current and voltage at any time istant.

v(t) = R · i(t) + L · d i(t)
d t + 1

C ·
∫ t

−∞ i(x) d x

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 11 / 113

Background - Engineering - Notations
Semantics: abstract definitions

I

C

L

R

V
RLC (V, R, L, C)

Using the Laws of Physics (Kirchhoff Voltages Law) we can give an
abstract and rigorous description of the relationship between the
current and voltage at any time istant.

v(t) = R · i(t) + L · d i(t)
d t + 1

C ·
∫ t

−∞ i(x) d x

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 11 / 113

Background - Engineering - Notations
Semantics: abstract definitions

I

C

L

R

V
RLC (V, R, L, C)

Using the Laws of Physics (Kirchhoff Voltages Law) we can give an
abstract and rigorous description of the relationship between the
current and voltage at any time istant.

v(t) = R · i(t) + L · d i(t)
d t + 1

C ·
∫ t

−∞ i(x) d x

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 11 / 113

Background - Engineering - Notations
Semantics: abstract definitions

I

C

L

R

V
RLC (V, R, L, C)

Using the Laws of Physics (Kirchhoff Voltages Law) we can give an
abstract and rigorous description of the relationship between the
current and voltage at any time istant.

v(t) = R · i(t) + L · d i(t)
d t + 1

C ·
∫ t

−∞ i(x) d x

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 11 / 113

Background - Engineering - Notations
Semantics: methods for formal manipulation

v(t) = R · i(t) + L · d i(t)
d t + 1

C ·
∫ t
−∞ i(x) d x

⇔ [Relationship between charge and current i(t) = d q(t)
d t]

v(t) = R · d q(t)
d t + L · d

2 q(t)
d t + 1

C ·
∫ t
−∞

d q(x)
d x d x

⇔ [Differential/integral calculus]

v(t) = R · d q(t)
d t + L · d

2 q(t)
d t + 1

C · q(t)

⇔ [Algebra, L 6= 0]

d2q(t)
dt + R

L ·
d q(t)
d t + 1

LC · q(t) = 1
L · v(t)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 12 / 113

Background - Engineering - Notations
Semantics: methods for formal manipulation

v(t) = R · i(t) + L · d i(t)
d t + 1

C ·
∫ t
−∞ i(x) d x

⇔ [Relationship between charge and current i(t) = d q(t)
d t]

v(t) = R · d q(t)
d t + L · d

2 q(t)
d t + 1

C ·
∫ t
−∞

d q(x)
d x d x

⇔ [Differential/integral calculus]

v(t) = R · d q(t)
d t + L · d

2 q(t)
d t + 1

C · q(t)

⇔ [Algebra, L 6= 0]

d2q(t)
dt + R

L ·
d q(t)
d t + 1

LC · q(t) = 1
L · v(t)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 12 / 113

Background - Engineering - Notations
Semantics: methods for formal manipulation

v(t) = R · i(t) + L · d i(t)
d t + 1

C ·
∫ t
−∞ i(x) d x

⇔ [Relationship between charge and current i(t) = d q(t)
d t]

v(t) = R · d q(t)
d t + L · d

2 q(t)
d t + 1

C ·
∫ t
−∞

d q(x)
d x d x

⇔ [Differential/integral calculus]

v(t) = R · d q(t)
d t + L · d

2 q(t)
d t + 1

C · q(t)

⇔ [Algebra, L 6= 0]

d2q(t)
dt + R

L ·
d q(t)
d t + 1

LC · q(t) = 1
L · v(t)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 12 / 113

Background - Engineering - Notations
Semantics: methods for formal manipulation

v(t) = R · i(t) + L · d i(t)
d t + 1

C ·
∫ t
−∞ i(x) d x

⇔ [Relationship between charge and current i(t) = d q(t)
d t]

v(t) = R · d q(t)
d t + L · d

2 q(t)
d t + 1

C ·
∫ t
−∞

d q(x)
d x d x

⇔ [Differential/integral calculus]

v(t) = R · d q(t)
d t + L · d

2 q(t)
d t + 1

C · q(t)

⇔ [Algebra, L 6= 0]

d2q(t)
dt + R

L ·
d q(t)
d t + 1

LC · q(t) = 1
L · v(t)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 12 / 113

Background - Engineering - Notations
Semantics: methods for formal manipulation

v(t) = R · i(t) + L · d i(t)
d t + 1

C ·
∫ t
−∞ i(x) d x

⇔ [Relationship between charge and current i(t) = d q(t)
d t]

v(t) = R · d q(t)
d t + L · d

2 q(t)
d t + 1

C ·
∫ t
−∞

d q(x)
d x d x

⇔ [Differential/integral calculus]

v(t) = R · d q(t)
d t + L · d

2 q(t)
d t + 1

C · q(t)

⇔ [Algebra, L 6= 0]

d2q(t)
dt + R

L ·
d q(t)
d t + 1

LC · q(t) = 1
L · v(t)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 12 / 113

Background - Engineering - Notations
Semantics: methods for formal manipulation

v(t) = R · i(t) + L · d i(t)
d t + 1

C ·
∫ t
−∞ i(x) d x

⇔ [Relationship between charge and current i(t) = d q(t)
d t]

v(t) = R · d q(t)
d t + L · d

2 q(t)
d t + 1

C ·
∫ t
−∞

d q(x)
d x d x

⇔ [Differential/integral calculus]

v(t) = R · d q(t)
d t + L · d

2 q(t)
d t + 1

C · q(t)

⇔ [Algebra, L 6= 0]

d2q(t)
dt + R

L ·
d q(t)
d t + 1

LC · q(t) = 1
L · v(t)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 12 / 113

Background - Engineering - Notations
Semantics: methods for formal manipulation

v(t) = R · i(t) + L · d i(t)
d t + 1

C ·
∫ t
−∞ i(x) d x

⇔ [Relationship between charge and current i(t) = d q(t)
d t]

v(t) = R · d q(t)
d t + L · d

2 q(t)
d t + 1

C ·
∫ t
−∞

d q(x)
d x d x

⇔ [Differential/integral calculus]

v(t) = R · d q(t)
d t + L · d

2 q(t)
d t + 1

C · q(t)

⇔ [Algebra, L 6= 0]

d2q(t)
dt + R

L ·
d q(t)
d t + 1

LC · q(t) = 1
L · v(t)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 12 / 113

Background - Engineering - Notations
Semantics: methods for formal manipulation

v(t) = R · i(t) + L · d i(t)
d t + 1

C ·
∫ t
−∞ i(x) d x

⇔ [Relationship between charge and current i(t) = d q(t)
d t]

v(t) = R · d q(t)
d t + L · d

2 q(t)
d t + 1

C ·
∫ t
−∞

d q(x)
d x d x

⇔ [Differential/integral calculus]

v(t) = R · d q(t)
d t + L · d

2 q(t)
d t + 1

C · q(t)

⇔ [Algebra, L 6= 0]

d2q(t)
dt + R

L ·
d q(t)
d t + 1

LC · q(t) = 1
L · v(t)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 12 / 113

Background - Engineering - Notations
Semantics: identification and study of characteristic features

Imax(ω): current magnitude as
a function of frequency ω

Resonance frequency:
the value ω0 s.t. Imax has a
peak in ω0

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 13 / 113

Background - Engineering - Notations
Semantics: identification and study of characteristic features

Imax(ω): current magnitude as
a function of frequency ω

Resonance frequency:
the value ω0 s.t. Imax has a
peak in ω0

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 13 / 113

Background - Engineering - Notations
Computer support: mechanization of formal manipulation

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 14 / 113

Background - Engineering - Notations
Semantics: identification and study of characteristic features

Tech. Specs

Imax(ω): current magnitude as
a function of frequency ω

Resonance frequency:
the value ω0 s.t. Imax has a
peak in ω0

Technical Specification

- Resonance frequency: 10.000 Hz
- ...

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 15 / 113

Background - Engineering - Notations
Semantics: identification and study of characteristic features Tech. Specs

Imax(ω): current magnitude as
a function of frequency ω

Resonance frequency:
the value ω0 s.t. Imax has a
peak in ω0

Technical Specification

- Resonance frequency: 10.000 Hz
- ...

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 15 / 113

Background - Engineering - Notations
Sample technical specification: Audio Power Amplifier

Power output .25 W rms per channel
Load impedence . 8 ohms
Total distorsion . < 0.08%
Frequency response 10÷ 50.000 Hz (+0.5 dB, −2 dB)
Power requirements

Power requirements . 220 V (50 Hz)
Max power comsumption . 160 W

Dimensions . 430 mm W
132 mm H
247 mm D

Weight . 4.5 Kg

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 16 / 113

Background - Engineering - Notations

c©M. Mazzoleni, L. Jurina “PONTI IN MURATURA: DIFETTI E PATOLOGIE”, CIAS 2006, Bolzano

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 17 / 113

Background - Engineering - Notations
Sample technical specification: The bridge

Max load . ??? t
Max wind speed . ??? m/s
Oscillation Freq. ??? Hz
· · ·

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 18 / 113

Background - Engineering - Technical Specifications

In general terms, Technical Specifications:

are characteristic features of the system

design

describe desirable requirements on the system

design

help reasoning about the system

design

should be met by the system

design

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 19 / 113

Background - Engineering - Technical Specifications

In general terms, Technical Specifications:

are characteristic features of the system design

describe desirable requirements on the system design

help reasoning about the system design

should be met by the system design

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 19 / 113

Background - Engineering - RESUME

Civil, Naval, Nuclear, Electrical, Electronic (. . .) Engineers
use notations for√

technical specifications (requirements specifications) as well as
√

design specifications/models
which

are strongly based on mathematics (and physics),

are characterized by great and flexible descriptive power,

allow for the formal manipulation of their objects

are heavily supported by computer (software) tools
(e.g. for relating models to technical specs)

Engineers are supposed to be aware of underlying theories but they
are not required to completely master them.

What about (Critical) Software Engineers?

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 20 / 113

Background - Software Eng. - PROBLEM STATEMENT

Civil, Naval, Nuclear, Electrical, Electronic (. . .) Engineers
use notations for√

technical specifications (requirements specifications) as well as
√

design specifications/models
which

are strongly based on mathematics (and physics),

are characterized by great and flexible descriptive power,

allow for the formal manipulation of their objects

are heavily supported by computer (software) tools
(e.g. for relating models to technical specs)

Engineers are supposed to be aware of underlying theories but they
are not required to completely master them.

What about (Critical) Software Engineers?

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 20 / 113

Background - Software Engineering

Software design and development is a matter of Art

Software design and development is a matter of kraft-work

but

Engineering requires (ingenuity, inspiration, ...) and the systematic
application of sound techniques, with strong mathematical basis

⇒ Several techniques developed for programming (SP, OOP, EP ...)

⇒ Some (in-/semi-)formal techniques developed for system design

What is the mathematical basis of SE?

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 21 / 113

Background - Software Engineering

Software design and development is a matter of Art

Software design and development is a matter of kraft-work

but

Engineering requires (ingenuity, inspiration, ...) and the systematic
application of sound techniques, with strong mathematical basis

⇒ Several techniques developed for programming (SP, OOP, EP ...)

⇒ Some (in-/semi-)formal techniques developed for system design

What is the mathematical basis of SE?

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 21 / 113

Background - Software Engineering

Software design and development is a matter of Art

Software design and development is a matter of kraft-work

but

Engineering requires (ingenuity, inspiration, ...) and the systematic
application of sound techniques, with strong mathematical basis

⇒ Several techniques developed for programming (SP, OOP, EP ...)

⇒ Some (in-/semi-)formal techniques developed for system design

What is the mathematical basis of SE?

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 21 / 113

Background - Software Engineering

Software design and development is a matter of Art

Software design and development is a matter of kraft-work

but

Engineering requires (ingenuity, inspiration, ...) and the systematic
application of sound techniques, with strong mathematical basis

⇒ Several techniques developed for programming (SP, OOP, EP ...)

⇒ Some (in-/semi-)formal techniques developed for system design

What is the mathematical basis of SE?

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 21 / 113

Background - Software Engineering

Software design and development is a matter of Art

Software design and development is a matter of kraft-work

but

Engineering requires (ingenuity, inspiration, ...) and the systematic
application of sound techniques, with strong mathematical basis

⇒ Several techniques developed for programming (SP, OOP, EP ...)

⇒ Some (in-/semi-)formal techniques developed for system design

What is the mathematical basis of SE?

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 21 / 113

Background - Software Engineering

Software design and development is a matter of Art

Software design and development is a matter of kraft-work

but

Engineering requires (ingenuity, inspiration, ...) and the systematic
application of sound techniques, with strong mathematical basis

⇒ Several techniques developed for programming (SP, OOP, EP ...)

⇒ Some (in-/semi-)formal techniques developed for system design

What is the mathematical basis of SE?

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 21 / 113

Background - Software Engineering

Software design and development is a matter of Art

Software design and development is a matter of kraft-work

but

Engineering requires (ingenuity, inspiration, ...) and the systematic
application of sound techniques, with strong mathematical basis

⇒ Several techniques developed for programming (SP, OOP, EP ...)

⇒ Some (in-/semi-)formal techniques developed for system design

What is the mathematical basis of SE?

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 21 / 113

Background - Software Engineering

Software design and development is a matter of Art

Software design and development is a matter of kraft-work

but

Engineering requires (ingenuity, inspiration, ...) and the systematic
application of sound techniques, with strong mathematical basis

⇒ Several techniques developed for programming (SP, OOP, EP ...)

⇒ Some (in-/semi-)formal techniques developed for system design

What is the mathematical basis of SE?

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 21 / 113

Background - Formal Methods

“All engineering disciplines make progress by employing
mathematically based notations and methods.

Research on ‘formal methods’ follows this model and attempts to
identify and develop mathematical approaches that can contribute to
the task of creating computer systems”

[C. Jones 2000]

Attempt to provide the (software) engineer with “concepts and
techniques as thinking tools, which are clean, adequate, and
convenient, to support him (or her) in describing, reasoning about,
and constructing complex software and hardware systems”

[W. Thomas 2000]

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 22 / 113

Background - Formal Methods

“All engineering disciplines make progress by employing
mathematically based notations and methods.
Research on ‘formal methods’ follows this model and attempts to
identify and develop mathematical approaches that can contribute to
the task of creating computer systems”

[C. Jones 2000]

Attempt to provide the (software) engineer with “concepts and
techniques as thinking tools, which are clean, adequate, and
convenient, to support him (or her) in describing, reasoning about,
and constructing complex software and hardware systems”

[W. Thomas 2000]

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 22 / 113

Background - Formal Methods

“All engineering disciplines make progress by employing
mathematically based notations and methods.
Research on ‘formal methods’ follows this model and attempts to
identify and develop mathematical approaches that can contribute to
the task of creating computer systems”

[C. Jones 2000]

Attempt to provide the (software) engineer with “concepts and
techniques as thinking tools, which are clean, adequate, and
convenient, to support him (or her) in describing, reasoning about,
and constructing complex software and hardware systems”

[W. Thomas 2000]

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 22 / 113

Formal Methods

Applying


Logic in

Theoretical

 Computer Science

For Supporting System Engineering

Emphasis on

Construction

Pragmatics

Automatic, often push-botton, Software Tool Support

rather than

classical issues like completeness.

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 23 / 113

Formal Methods

Applying


Logic in

Theoretical

 Computer Science

For Supporting System Engineering

Emphasis on

Construction

Pragmatics

Automatic, often push-botton, Software Tool Support

rather than

classical issues like completeness.

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 23 / 113

Formal Methods

Applying


Logic in

Theoretical

 Computer Science

For Supporting System Engineering

Emphasis on

Construction

Pragmatics

Automatic, often push-botton, Software Tool Support

rather than

classical issues like completeness.

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 23 / 113

Formal Methods

Applying


Logic in

Theoretical

 Computer Science

For Supporting System Engineering

Emphasis on

Construction

Pragmatics

Automatic, often push-botton, Software Tool Support

rather than

classical issues like completeness.

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 23 / 113

Formal Methods

Applying


Logic in

Theoretical

 Computer Science

For Supporting System Engineering

Emphasis on

Construction

Pragmatics

Automatic, often push-botton, Software Tool Support

rather than

classical issues like completeness.

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 23 / 113

Formal Methods

Applying


Logic in

Theoretical

 Computer Science

For Supporting System Engineering

Emphasis on

Construction

Pragmatics

Automatic, often push-botton, Software Tool Support

rather than

classical issues like completeness.

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 23 / 113

Formal Methods

Applying


Logic in

Theoretical

 Computer Science

For Supporting System Engineering

Emphasis on

Construction

Pragmatics

Automatic, often push-botton, Software Tool Support

rather than

classical issues like completeness.

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 23 / 113

Formal Methods

Applying


Logic in

Theoretical

 Computer Science

For Supporting System Engineering

Emphasis on

Construction

Pragmatics

Automatic, often push-botton, Software Tool Support

rather than

classical issues like completeness.

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 23 / 113

Formal Methods - OUR FOCUS

Here we focus on concurrent systems

System: composed of (very) many components

Component: performs (very) simple tasks (often sequential)

Interaction: complex; difficult to understand; non-deterministic; subtle
(race conditions, synchronization issues, dead-/live-locks, etc.)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 24 / 113

Formal Methods for Concurrent Systems

However notice that

sound mathematical theories for non-concurrent, sequential
(functional, imperative) programs exist

the bulk of Computation Theory (Gödel, Turing, Church, etc)

formal semantics, e.g.

Operational Semantics
(based on abstract machines)

Denotational semantics
(based on lattices, complete partial orders, fixpoint theory)

formal analysis, e.g.

Hoare Logic

Cousot Abstract Interpretation

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 25 / 113

A
Labelled Transition Systems

Process Algebraic
Approach to

System Modelling
(design specification)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 26 / 113

State-Transition Structures

Description of behaviour of a system
A set of states which the system can be at

A set of transitions which describe how a system can move from which
state to which one

STATE TRANSITION

The specific set of voltages at the compo-
nents of a circuit at a given point in time

Any change of such values

The specific set of values of variables and
execution points (PC) of the SW compo-
nents of a distributed system at a given
point in time (i.e. the system state vec-
tor)

Execution of a command
(e.g. variable assignment)

Being free or in use of a computing resource
in a system

Granting (or refusing) a
request of use

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 27 / 113

State-Transition Structures

Description of behaviour of a system
A set of states which the system can be at

A set of transitions which describe how a system can move from which
state to which one

STATE TRANSITION

The specific set of voltages at the compo-
nents of a circuit at a given point in time

Any change of such values

The specific set of values of variables and
execution points (PC) of the SW compo-
nents of a distributed system at a given
point in time (i.e. the system state vec-
tor)

Execution of a command
(e.g. variable assignment)

Being free or in use of a computing resource
in a system

Granting (or refusing) a
request of use

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 27 / 113

State-Transition Structures

Description of behaviour of a system
A set of states which the system can be at

A set of transitions which describe how a system can move from which
state to which one

STATE TRANSITION

The specific set of voltages at the compo-
nents of a circuit at a given point in time

Any change of such values

The specific set of values of variables and
execution points (PC) of the SW compo-
nents of a distributed system at a given
point in time (i.e. the system state vec-
tor)

Execution of a command
(e.g. variable assignment)

Being free or in use of a computing resource
in a system

Granting (or refusing) a
request of use

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 27 / 113

State-Transition Structures

Description of behaviour of a system
A set of states which the system can be at

A set of transitions which describe how a system can move from which
state to which one

STATE TRANSITION

The specific set of voltages at the compo-
nents of a circuit at a given point in time

Any change of such values

The specific set of values of variables and
execution points (PC) of the SW compo-
nents of a distributed system at a given
point in time (i.e. the system state vec-
tor)

Execution of a command
(e.g. variable assignment)

Being free or in use of a computing resource
in a system

Granting (or refusing) a
request of use

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 27 / 113

State -Transition Structures

Graphical notation

Mathematical definition

A STS is a tuple (S ,→) where:

S is the set of states

({s0, s1, s2, s3, s4, s5} in the example above)
→ ⊆ S × S is the transition relation

(→ = {(s0, s1), (s1, s0), (s0, s2), . . . , (s4, s5)} in the example above)

s0 ∈ S is the initial state

We write s→s ′ whenever (s, s ′) ∈ →

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 28 / 113

State -Transition Structures

Graphical notation

s0

s1

s2

s3

s4

s5

Mathematical definition

A STS is a tuple (S ,→) where:

S is the set of states

({s0, s1, s2, s3, s4, s5} in the example above)
→ ⊆ S × S is the transition relation

(→ = {(s0, s1), (s1, s0), (s0, s2), . . . , (s4, s5)} in the example above)

s0 ∈ S is the initial state

We write s→s ′ whenever (s, s ′) ∈ →

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 28 / 113

State -Transition Structures

Graphical notation

s0

s1

s2

s3

s4

s5

Mathematical definition

A STS is a tuple (S ,→) where:

S is the set of states

({s0, s1, s2, s3, s4, s5} in the example above)
→ ⊆ S × S is the transition relation

(→ = {(s0, s1), (s1, s0), (s0, s2), . . . , (s4, s5)} in the example above)

s0 ∈ S is the initial state

We write s→s ′ whenever (s, s ′) ∈ →

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 28 / 113

State -Transition Structures

Graphical notation

s0

s1

s2

s3

s4

s5

Mathematical definition

A STS is a tuple (S ,→) where:

S is the set of states

({s0, s1, s2, s3, s4, s5} in the example above)
→ ⊆ S × S is the transition relation

(→ = {(s0, s1), (s1, s0), (s0, s2), . . . , (s4, s5)} in the example above)

s0 ∈ S is the initial state

We write s→s ′ whenever (s, s ′) ∈ →

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 28 / 113

State -Transition Structures

Graphical notation

s0

s1

s2

s3

s4

s5

Mathematical definition

A STS is a tuple (S ,→) where:

S is the set of states ({s0, s1, s2, s3, s4, s5} in the example above)

→ ⊆ S × S is the transition relation

(→ = {(s0, s1), (s1, s0), (s0, s2), . . . , (s4, s5)} in the example above)

s0 ∈ S is the initial state

We write s→s ′ whenever (s, s ′) ∈ →

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 28 / 113

State -Transition Structures

Graphical notation

s0

s1

s2

s3

s4

s5

Mathematical definition

A STS is a tuple (S ,→) where:

S is the set of states ({s0, s1, s2, s3, s4, s5} in the example above)
→ ⊆ S × S is the transition relation

(→ = {(s0, s1), (s1, s0), (s0, s2), . . . , (s4, s5)} in the example above)
s0 ∈ S is the initial state

We write s→s ′ whenever (s, s ′) ∈ →

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 28 / 113

State -Transition Structures

Graphical notation

s0

s1

s2

s3

s4

s5

Mathematical definition

A STS is a tuple (S ,→) where:

S is the set of states ({s0, s1, s2, s3, s4, s5} in the example above)
→ ⊆ S × S is the transition relation
(→ = {(s0, s1), (s1, s0), (s0, s2), . . . , (s4, s5)} in the example above)

s0 ∈ S is the initial state

We write s→s ′ whenever (s, s ′) ∈ →

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 28 / 113

State -Transition Structures

Graphical notation

s0

s1

s2

s3

s4

s5

Mathematical definition

A STS is a tuple (S ,→, s0) where:

S is the set of states ({s0, s1, s2, s3, s4, s5} in the example above)
→ ⊆ S × S is the transition relation
(→ = {(s0, s1), (s1, s0), (s0, s2), . . . , (s4, s5)} in the example above)
s0 ∈ S is the initial state

We write s→s ′ whenever (s, s ′) ∈ →

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 28 / 113

State -Transition Structures

Graphical notation

s0

s1

s2

s3

s4

s5

Mathematical definition

A STS is a tuple (S ,→) where:

S is the set of states ({s0, s1, s2, s3, s4, s5} in the example above)
→ ⊆ S × S is the transition relation
(→ = {(s0, s1), (s1, s0), (s0, s2), . . . , (s4, s5)} in the example above)
s0 ∈ S is the initial state

We write s→s ′ whenever (s, s ′) ∈ →

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 28 / 113

State Labelled-Transition Structures

Graphical notation

s0

s1

s2

s3

s4

s5

x

y

z

t

v

w

Mathematical definition

A tuple (S ,As , L,→, s0) where:
S is the set of states
As is a set of state labels (in the example {x , y , v ,w , t, z})
L : S −→ As is a state-labelling function

e.g. L(s) is the state vector at s,
or L(s)=ok iff a given component is up and running in s
etc.

→⊆ S × S is the transition relation
s0 ∈ S is the initial state

Kripke Structure: L(s) is a set of atomic propositions holding in s

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 29 / 113

State Labelled-Transition Structures

Graphical notation

s0

s1

s2

s3

s4

s5

x

y

z

t

v

w

Mathematical definition

A tuple (S ,As , L,→, s0) where:
S is the set of states
As is a set of state labels (in the example {x , y , v ,w , t, z})
L : S −→ As is a state-labelling function

e.g. L(s) is the state vector at s,
or L(s)=ok iff a given component is up and running in s
etc.

→⊆ S × S is the transition relation
s0 ∈ S is the initial state

Kripke Structure: L(s) is a set of atomic propositions holding in s
c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 29 / 113

State-Transition Labelled Structures

Graphical notation

s0

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

Mathematical definition

A tuple (S ,At ,→, s0) where:
S is the set of states
At is a set of transition labels (actions) (in the example {a, b, c , d})

a may denote an interaction (e.g. synchronous communication) or a
local operation (e.g. assignment)

→⊆ S × At × S is the transition relation
s0 ∈ S is the initial state

Labelled Transition Systems (LTS)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 30 / 113

State-Transition Labelled Structures

Graphical notation

s0

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

Mathematical definition

A tuple (S ,At ,→, s0) where:
S is the set of states
At is a set of transition labels (actions) (in the example {a, b, c , d})

a may denote an interaction (e.g. synchronous communication) or a
local operation (e.g. assignment)

→⊆ S × At × S is the transition relation
s0 ∈ S is the initial state

Labelled Transition Systems (LTS)
c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 30 / 113

State and Transition Labelled Structures

Graphical notation

s0

s1

s2

s3

s4

s5

x

y

z

t

v

w

b

a

a

d

a

c

ab
d

a

Mathematical definition

A tuple (S ,As , L,At ,→, s0) where:
S is the set of states
As is a set of state labels
L : S −→ As is a state-labelling function
→⊆ S × At × S
s0 ∈ S is the initial state

Doubly Labelled Transition Systems / Bi-Labelled Transition Systems
([De Nicola, Vaandeager]/ [Gnesi et al.])

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 31 / 113

State and Transition Labelled Structures

Graphical notation

s0

s1

s2

s3

s4

s5

x

y

z

t

v

w

b

a

a

d

a

c

ab
d

a

Mathematical definition

A tuple (S ,As , L,At ,→, s0) where:
S is the set of states
As is a set of state labels
L : S −→ As is a state-labelling function
→⊆ S × At × S
s0 ∈ S is the initial state

Doubly Labelled Transition Systems / Bi-Labelled Transition Systems
([De Nicola, Vaandeager]/ [Gnesi et al.])

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 31 / 113

Example of Textual definition of a LTS

s0

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

Formal Syntax definition of process states

S ::= nil (no action)
| α.S (action prefix)
| S + S (choice)
| α.X (constant X)

with actions α ∈ At

and constants X defined via equations X
∆
= S

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 32 / 113

Example of Textual definition of a LTS

s0

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

Formal Syntax definition of process states

S ::= nil (no action)
| α.S (action prefix)
| S + S (choice)
| α.X (constant X)

with actions α ∈ At

and constants X defined via equations X
∆
= S

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 32 / 113

Example of Textual definition of a LTS

s0

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

Formal Syntax definition of process states

S ::= nil (no action)
| α.S (action prefix)
| S + S (choice)
| α.X (constant X)

with actions α ∈ At

and constants X defined via equations X
∆
= S

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 32 / 113

Example of Textual definition of a LTS

s0

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

Formal Syntax definition of process states

S ::= nil (no action)
| α.S (action prefix)
| S + S (choice)
| α.X (constant X)

with actions α ∈ At

and constants X defined via equations X
∆
= S

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 32 / 113

Example of Textual definition of a LTS

s0

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

Formal Syntax definition of process states

S ::= nil (no action)
| α.S (action prefix)
| S + S (choice)
| α.X (constant X)

with actions α ∈ At

and constants X defined via equations X
∆
= S

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 32 / 113

Example of Textual definition of a LTS

s0

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

Basic components

e.g. nil, Actions

Ways for composing them

e.g. action prefix operator (.), choice operator (+)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 33 / 113

Example of Textual definition of a LTS

s0

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

Basic components
e.g. Resistors, Inductances, Capacitors

Ways for composing them

e.g. action prefix operator (.), choice operator (+)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 33 / 113

Example of Textual definition of a LTS

s0

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

Basic components
e.g. nil, Actions

Ways for composing them

e.g. action prefix operator (.), choice operator (+)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 33 / 113

Example of Textual definition of a LTS

s0

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

Basic components
e.g. nil, Actions

Ways for composing them
e.g. action prefix operator (.), choice operator (+)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 33 / 113

From algebraic terms to LTS via Formal Semantics.

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Logic deduction system)

Mathematical Objects
(LTS)

s0

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 34 / 113

From algebraic terms to LTS via Formal Semantics.

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Logic deduction system)

Mathematical Objects
(LTS)

s0

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 34 / 113

From algebraic terms to LTS via Formal Semantics.

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Logic deduction system)

Mathematical Objects
(LTS)

s0

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 34 / 113

From algebraic terms to LTS via Formal Semantics.

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Logic deduction system)

Mathematical Objects
(LTS)

s0

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 34 / 113

From algebraic terms to LTS via Formal Semantics.

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Logic deduction system)

Mathematical Objects
(LTS)

s0

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 34 / 113

From algebraic terms to LTS via Formal Semantics.

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Logic deduction system)

Mathematical Objects
(LTS)

s0

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 34 / 113

Back to the RLC circuit

C

L

R

V

I

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 35 / 113

Focus on R

2R

C

L

R

V

I

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 36 / 113

Focus on R

R 2R

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 37 / 113

RES(R) and PARALLEL (RES(2R),RES(2R))

R 2R 2R

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 38 / 113

RES(R) and PARALLEL (RES(2R),RES(2R))

R 2R 2R?

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 39 / 113

RES(R) ≡ PARALLEL (RES(2R),RES(2R))

R 2R 2R

It can be proved:

Resistance(PARALLEL(RES(R1),RES(R2))) = 1
1
R1

+ 1
R2

Resistance(PARALLELk
j=1(RES(Rj))) = 1∑k

j=1
1
Rj

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 40 / 113

RES(R) ≡ PARALLEL (RES(2R),RES(2R))

R 2R 2R

It can be proved:

Resistance(PARALLEL(RES(R1),RES(R2))) = 1
1
R1

+ 1
R2

Resistance(PARALLELk
j=1(RES(Rj))) = 1∑k

j=1
1
Rj

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 40 / 113

RES(R) ≡ PARALLEL (RES(2R),RES(2R))

R 2R 2R

It can be proved:

Resistance(PARALLEL(RES(R1),RES(R2))) = 1
1
R1

+ 1
R2

Resistance(PARALLELk
j=1(RES(Rj))) = 1∑k

j=1
1
Rj

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 40 / 113

Replacing equivalent components ...

?

C

L

R

V

I

C

L
V

I

2R 2R

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 41 / 113

... brings to equivalent circuits

2R

C

L

R

V

I

C

L
V

I

2R

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 42 / 113

Congruence

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 43 / 113

Congruence

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 43 / 113

Congruence

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 44 / 113

Congruence

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 45 / 113

Congruence

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 46 / 113

Congruence

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 47 / 113

Congruence

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 48 / 113

LTS behaviour equivalence

c

s3 s4 s5 s6

s1 s2

s0 t0

t1

t2 t3

a a a

b c c b b

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 49 / 113

LTS behaviour equivalence

cb b

s3 s4 s5 s6

s1 s2

s0 t0

t1

t2 t3

a a a

b c c

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 50 / 113

(Strong) Bisimulation Equivalence

Two states s and t are Bisimulation Equivalent (s ∼ t) iff there exists
bisimulation relation B s.t. s B t

A binary relation B on the set of states is a bisimulation relation iff,
for all s, t s.t. s B t and transition labels α:

whenever s
α−→s ′, there exists t ′ s.t. t

α−→t ′ and s ′ B t ′

whenever t
α−→t ′, there exists s ′ s.t. s

α−→s ′ and s ′ B t ′

We usually refer to the initial states of two systems.

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 51 / 113

(Strong) Bisimulation Equivalence

Two states s and t are Bisimulation Equivalent (s ∼ t) iff there exists
bisimulation relation B s.t. s B t

A binary relation B on the set of states is a bisimulation relation iff,
for all s, t s.t. s B t and transition labels α:

whenever s
α−→s ′, there exists t ′ s.t. t

α−→t ′ and s ′ B t ′

whenever t
α−→t ′, there exists s ′ s.t. s

α−→s ′ and s ′ B t ′

We usually refer to the initial states of two systems.

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 51 / 113

(Strong) Bisimulation Equivalence

Two states s and t are Bisimulation Equivalent (s ∼ t) iff there exists
bisimulation relation B s.t. s B t

A binary relation B on the set of states is a bisimulation relation iff,
for all s, t s.t. s B t and transition labels α:

whenever s
α−→s ′, there exists t ′ s.t. t

α−→t ′ and s ′ B t ′

whenever t
α−→t ′, there exists s ′ s.t. s

α−→s ′ and s ′ B t ′

We usually refer to the initial states of two systems.

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 51 / 113

(Strong) Bisimulation Equivalence

Two states s and t are Bisimulation Equivalent (s ∼ t) iff there exists
bisimulation relation B s.t. s B t

A binary relation B on the set of states is a bisimulation relation iff,
for all s, t s.t. s B t and transition labels α:

whenever s
α−→s ′, there exists t ′ s.t. t

α−→t ′ and s ′ B t ′

whenever t
α−→t ′, there exists s ′ s.t. s

α−→s ′ and s ′ B t ′

We usually refer to the initial states of two systems.

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 51 / 113

(Strong) Bisimulation Equivalence

Two states s and t are Bisimulation Equivalent (s ∼ t) iff there exists
bisimulation relation B s.t. s B t

A binary relation B on the set of states is a bisimulation relation iff,
for all s, t s.t. s B t and transition labels α:

whenever s
α−→s ′, there exists t ′ s.t. t

α−→t ′ and s ′ B t ′

whenever t
α−→t ′, there exists s ′ s.t. s

α−→s ′ and s ′ B t ′

We usually refer to the initial states of two systems.

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 51 / 113

(Strong) Bisimulation Equivalence

Two states s and t are Bisimulation Equivalent (s ∼ t) iff there exists
bisimulation relation B s.t. s B t

A binary relation B on the set of states is a bisimulation relation iff,
for all s, t s.t. s B t and transition labels α:

whenever s
α−→s ′, there exists t ′ s.t. t

α−→t ′ and s ′ B t ′

whenever t
α−→t ′, there exists s ′ s.t. s

α−→s ′ and s ′ B t ′

We usually refer to the initial states of two systems.

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 51 / 113

LTS behaviour equivalence

c

s4s3

s1 s2

s0 t0

t1

t2 t3

a a a

b b c

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 52 / 113

LTS behaviour equivalence

Trace

s3

c

s1 s2

s0 t0

t1

t2 t3

a a a

b b c

s4

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 53 / 113

Algebraic Laws for Bisimulation Equivalence

For all terms S ,S1,S2

S + nil ∼ S
S + S ∼ S

S1 + S2 ∼ S2 + S1

S + (S1 + S2) ∼ (S + S1) + S2

Bisimulation Equivalence is actually a congruence:
If S1 ∼ S2 then, for all S and α

α.S1 ∼ α.S2

S + S1 ∼ S + S2

Expressions can be reduced/simplified!!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 54 / 113

Algebraic Laws for Bisimulation Equivalence

For all terms S , S1,S2

S + nil ∼ S
S + S ∼ S

S1 + S2 ∼ S2 + S1

S + (S1 + S2) ∼ (S + S1) + S2

Bisimulation Equivalence is actually a congruence:
If S1 ∼ S2 then, for all S and α

α.S1 ∼ α.S2

S + S1 ∼ S + S2

Expressions can be reduced/simplified!!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 54 / 113

Algebraic Laws for Bisimulation Equivalence

For all terms S , S1,S2

S + nil ∼ S
S + S ∼ S

S1 + S2 ∼ S2 + S1

S + (S1 + S2) ∼ (S + S1) + S2

Bisimulation Equivalence is actually a congruence:
If S1 ∼ S2 then, for all S and α

α.S1 ∼ α.S2

S + S1 ∼ S + S2

Expressions can be reduced/simplified!!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 54 / 113

Algebraic Laws for Bisimulation Equivalence

For all terms S , S1,S2

S + nil ∼ S
S + S ∼ S

S1 + S2 ∼ S2 + S1

S + (S1 + S2) ∼ (S + S1) + S2

Bisimulation Equivalence is actually a congruence:
If S1 ∼ S2 then, for all S and α

α.S1 ∼ α.S2

S + S1 ∼ S + S2

Expressions can be reduced/simplified!!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 54 / 113

Parallel Composition

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 55 / 113

Example

C1

RM

C2

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 56 / 113

Example

C1

RM

C2

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 57 / 113

Example

C2C1

RM

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 58 / 113

Example

C2C1

RsRM

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 59 / 113

Example

C2C1

Rs RfRM

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 60 / 113

Example

C2C1

E

Rs RfRM

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 61 / 113

Example

C2C1

E

Rs RfRM

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 62 / 113

Example

C2

Rs

C1

E

Rs RfRM

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 63 / 113

Example

C2

Rs

E

C1

E

Rs RfRM

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 64 / 113

Example

C2

Rs

Rf

E

C1

E

Rs RfRM

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 65 / 113

Example

C2

Rs

Rf Rf

E

C1

E

Rs RfRM

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 66 / 113

Example

C2

Rs

Rf Rf

RsE

C1

E

Rs RfRM

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 67 / 113

Example

RM

Rs

Rf Rf

RsE

C2

Rs

Rf Rf

RsE

C1

E

Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 68 / 113

Example

RM

Rs

Rf Rf

RsE

C2

Rs

Rf Rf

RsE

C1

E

Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 69 / 113

Example

Rs

Rs

Rf Rf

RsE

C2

Rs

Rf Rf

RsE

C1

E

Rs RfRM

E

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 70 / 113

Example

E

Rs

Rf Rf

RsE

C2

Rs

Rf Rf

RsE

C1

E

Rs RfRM

E
Rs

Rs

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 71 / 113

Example

Rf

Rs

Rf Rf

RsE

C2

Rs

Rf Rf

RsE

C1

E

Rs RfRM

E
Rs

Rs
E

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 72 / 113

Example

Rf

Rs

Rf Rf

RsE

C2

Rs

Rf Rf

RsE

C1

E

Rs RfRM

E
Rs

Rs
E

Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 73 / 113

Example

Rs

Rs

Rf Rf

RsE

C2

Rs

Rf Rf

RsE

C1

E

Rs RfRM

E
Rs

Rs
E

Rf Rf E

Rs

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 74 / 113

Example

E

Rs

Rf Rf

RsE

C2

Rs

Rf Rf

RsE

C1

E

Rs RfRM

E
Rs

Rs
E

Rf E

Rs

Rs

Rf

Rf

Rf Rs

Rs

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 75 / 113

Example

C1

Rs

Rf Rf

RsE

C2

E

Rs RfRM

Rs

Rf Rf

RsE

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 76 / 113

Example

C1

Rs

Rf Rf

RsE

C2

E

Rs RfRM

Rs

Rf Rf

RsE

Idle
∆
= Rs.Using + Rf.Retry

C1
∆
= Idle

Using
∆
= E.Idle

C2
∆
= Idle

Retry
∆
= Rf.Retry + Rs.Using

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 77 / 113

Example

C1

Rs

Rf Rf

RsE

C2

E

Rs RfRM

Rs

Rf Rf

RsE

Idle
∆
= Rs.Using + Rf.Retry C1

∆
= Idle

Using
∆
= E.Idle

C2
∆
= Idle

Retry
∆
= Rf.Retry + Rs.Using

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 77 / 113

Example

C1

Rs

Rf Rf

RsE

C2

E

Rs RfRM

Rs

Rf Rf

RsE

Idle
∆
= Rs.Using + Rf.Retry C1

∆
= Idle

Using
∆
= E.Idle C2

∆
= Idle

Retry
∆
= Rf.Retry + Rs.Using

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 77 / 113

Example

Clients

Rs

Rf Rf

RsE

C2

E

Rs RfRM

Rs

Rf Rf

RsE

C1

Idle
∆
= Rs.Using + Rf.Retry C1

∆
= Idle

Using
∆
= E.Idle C2

∆
= Idle

Retry
∆
= Rf.Retry + Rs.Using Clients

∆
= (C1 | [] | C2)

Free
∆
= Rs.InUse

InUse
∆
= Rf. InUse + E.Free RM

∆
= Free

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 78 / 113

Example

Clients

Rs

Rf Rf

RsE

C2

E

Rs RfRM

Rs

Rf Rf

RsE

C1

Idle
∆
= Rs.Using + Rf.Retry C1

∆
= Idle

Using
∆
= E.Idle C2

∆
= Idle

Retry
∆
= Rf.Retry + Rs.Using Clients

∆
= (C1 | [] | C2)

Free
∆
= Rs.InUse

InUse
∆
= Rf. InUse + E.Free

RM
∆
= Free

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 78 / 113

Example

Clients

Rs

Rf Rf

RsE

C2

E

Rs RfRM

Rs

Rf Rf

RsE

C1

Idle
∆
= Rs.Using + Rf.Retry C1

∆
= Idle

Using
∆
= E.Idle C2

∆
= Idle

Retry
∆
= Rf.Retry + Rs.Using Clients

∆
= (C1 | [] | C2)

Free
∆
= Rs.InUse

InUse
∆
= Rf. InUse + E.Free RM

∆
= Free

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 78 / 113

Example

{Rs,Rf,E}

Rs

Rf Rf

RsE

C2

E

Rs RfRM

Rs

Rf Rf

RsE

C1

Clients

Idle
∆
= Rs.Using + Rf.Retry C1

∆
= Idle

Using
∆
= E.Idle C2

∆
= Idle

Retry
∆
= Rf.Retry + Rs.Using Clients

∆
= (C1 | [] | C2)

Free
∆
= Rs.InUse

InUse
∆
= Rf. InUse + E.Free RM

∆
= Free

System
∆
= RM | [Rs,Rf,E] | Clients

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 79 / 113

A process algebraic approach to system modelling

1 Algebraic terms

, defined via a Formal syntax, often with graphical
tool support;

2 LTS

, the reference Mathematical Objects

, equipped with Behavioural
Relations, i.e. Formal Preorders, Equivalences, and Congruences

3 A mapping of terms to LTS

, the Formal Semantics definition

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 80 / 113

A process algebraic approach to system modelling

1 Algebraic terms

, defined via a Formal syntax, often with graphical
tool support;

2 LTS

, the reference Mathematical Objects

, equipped with Behavioural
Relations, i.e. Formal Preorders, Equivalences, and Congruences

3 A mapping of terms to LTS

, the Formal Semantics definition

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 80 / 113

A process algebraic approach to system modelling

1 Algebraic terms, defined via a Formal syntax

, often with graphical
tool support;

2 LTS

, the reference Mathematical Objects

, equipped with Behavioural
Relations, i.e. Formal Preorders, Equivalences, and Congruences

3 A mapping of terms to LTS

, the Formal Semantics definition

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 80 / 113

A process algebraic approach to system modelling

1 Algebraic terms, defined via a Formal syntax, often with graphical
tool support;

2 LTS

, the reference Mathematical Objects

, equipped with Behavioural
Relations, i.e. Formal Preorders, Equivalences, and Congruences

3 A mapping of terms to LTS

, the Formal Semantics definition

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 80 / 113

A process algebraic approach to system modelling

1 Algebraic terms, defined via a Formal syntax, often with graphical
tool support;

2 LTS

, the reference Mathematical Objects

, equipped with Behavioural
Relations, i.e. Formal Preorders, Equivalences, and Congruences

3 A mapping of terms to LTS

, the Formal Semantics definition

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 80 / 113

A process algebraic approach to system modelling

1 Algebraic terms, defined via a Formal syntax, often with graphical
tool support;

2 LTS, the reference Mathematical Objects

, equipped with Behavioural
Relations, i.e. Formal Preorders, Equivalences, and Congruences

3 A mapping of terms to LTS

, the Formal Semantics definition

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 80 / 113

A process algebraic approach to system modelling

1 Algebraic terms, defined via a Formal syntax, often with graphical
tool support;

2 LTS, the reference Mathematical Objects, equipped with Behavioural
Relations

, i.e. Formal Preorders, Equivalences, and Congruences

3 A mapping of terms to LTS

, the Formal Semantics definition

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 80 / 113

A process algebraic approach to system modelling

1 Algebraic terms, defined via a Formal syntax, often with graphical
tool support;

2 LTS, the reference Mathematical Objects, equipped with Behavioural
Relations, i.e. Formal Preorders, Equivalences, and Congruences

3 A mapping of terms to LTS

, the Formal Semantics definition

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 80 / 113

A process algebraic approach to system modelling

1 Algebraic terms, defined via a Formal syntax, often with graphical
tool support;

2 LTS, the reference Mathematical Objects, equipped with Behavioural
Relations, i.e. Formal Preorders, Equivalences, and Congruences

3 A mapping of terms to LTS

, the Formal Semantics definition

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 80 / 113

A process algebraic approach to system modelling

1 Algebraic terms, defined via a Formal syntax, often with graphical
tool support;

2 LTS, the reference Mathematical Objects, equipped with Behavioural
Relations, i.e. Formal Preorders, Equivalences, and Congruences

3 A mapping of terms to LTS, the Formal Semantics definition

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 80 / 113

A process algebraic approach to system modelling

1 Algebraic terms, defined via a Formal syntax, often with graphical
tool support;

2 LTS, the reference Mathematical Objects, equipped with Behavioural
Relations, i.e. Formal Preorders, Equivalences, and Congruences

3 A mapping of terms to LTS, the Formal Semantics definition

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 80 / 113

A process algebraic approach to system modelling

1 Algebraic terms, defined via a Formal syntax, often with graphical
tool support;

2 LTS, the reference Mathematical Objects, equipped with Behavioural
Relations, i.e. Formal Preorders, Equivalences, and Congruences

3 A mapping of terms to LTS, the Formal Semantics definition

4 Algebraic terms manipulation rules, i.e. Axiomatizations of
Equivalences

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 80 / 113

An example (Hoare CSP-like)

Formal Syntax definition:

S ::= nil | α.S | S + S | X | S |[α1, . . . , αn]|S
with α, α1. . . . αn ∈ At and constants defined via equations X

∆
= S .

P def
= the set of terms generated by the above grammar.

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 81 / 113

An example (Hoare CSP-like)

Formal Syntax definition:

S ::= nil | α.S | S + S | X | S |[α1, . . . , αn]|S
with α, α1. . . . αn ∈ At and constants defined via equations X

∆
= S .

P def
= the set of terms generated by the above grammar.

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 81 / 113

An example (Hoare CSP-like)

Formal Syntax definition:

S ::= nil | α.S | S + S | X | S |[α1, . . . , αn]|S
with α, α1. . . . αn ∈ At and constants defined via equations X

∆
= S .

P def
= the set of terms generated by the above grammar.

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 81 / 113

An example (Hoare CSP-like)

Formal Semantics definition:

α.S
α−→S

S1
α−→S

S1 + S2
α−→S

S2
α−→S

S1 + S2
α−→S

S
α−→S ′,X

∆
= S

X
α−→S ′

S1
α−→S ′1, α 6∈ L

S1|L|S2
α−→S ′1|L|S2

S2
α−→S ′2, α 6∈ L

S1|L|S2
α−→S1|L|S ′2

S1
α−→S ′1, S2

α−→S ′2, α ∈ L

S1|L|S2
α−→S ′1|L|S ′2

LTSG
def
= (P,At ,−→) with:

1 P: the set of states defined by the above grammar
2 At : the set of transition labels
3 −→ ⊆ P × At × P, the least relation satisfying the above rules.

For S ∈ P, let RS be the set of states in P which are reachable from
S via −→, LTSS

def
= (RS ,At ,−→ ∩ (RS × At ×RS),S)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 82 / 113

An example (Hoare CSP-like)

Formal Semantics definition:

α.S
α−→S

S1
α−→S

S1 + S2
α−→S

S2
α−→S

S1 + S2
α−→S

S
α−→S ′,X

∆
= S

X
α−→S ′

S1
α−→S ′1, α 6∈ L

S1|L|S2
α−→S ′1|L|S2

S2
α−→S ′2, α 6∈ L

S1|L|S2
α−→S1|L|S ′2

S1
α−→S ′1, S2

α−→S ′2, α ∈ L

S1|L|S2
α−→S ′1|L|S ′2

LTSG
def
= (P,At ,−→) with:

1 P: the set of states defined by the above grammar
2 At : the set of transition labels
3 −→ ⊆ P × At × P, the least relation satisfying the above rules.

For S ∈ P, let RS be the set of states in P which are reachable from
S via −→, LTSS

def
= (RS ,At ,−→ ∩ (RS × At ×RS),S)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 82 / 113

An example (Hoare CSP-like)

Formal Semantics definition:

α.S
α−→S

S1
α−→S

S1 + S2
α−→S

S2
α−→S

S1 + S2
α−→S

S
α−→S ′,X

∆
= S

X
α−→S ′

S1
α−→S ′1, α 6∈ L

S1|L|S2
α−→S ′1|L|S2

S2
α−→S ′2, α 6∈ L

S1|L|S2
α−→S1|L|S ′2

S1
α−→S ′1, S2

α−→S ′2, α ∈ L

S1|L|S2
α−→S ′1|L|S ′2

LTSG
def
= (P,At ,−→) with:

1 P: the set of states defined by the above grammar
2 At : the set of transition labels
3 −→ ⊆ P × At × P, the least relation satisfying the above rules.

For S ∈ P, let RS be the set of states in P which are reachable from
S via −→, LTSS

def
= (RS ,At ,−→ ∩ (RS × At ×RS),S)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 82 / 113

An example (Hoare CSP-like)

Formal Semantics definition:

α.S
α−→S

S1
α−→S

S1 + S2
α−→S

S2
α−→S

S1 + S2
α−→S

S
α−→S ′,X

∆
= S

X
α−→S ′

S1
α−→S ′1, α 6∈ L

S1|L|S2
α−→S ′1|L|S2

S2
α−→S ′2, α 6∈ L

S1|L|S2
α−→S1|L|S ′2

S1
α−→S ′1, S2

α−→S ′2, α ∈ L

S1|L|S2
α−→S ′1|L|S ′2

LTSG
def
= (P,At ,−→) with:

1 P: the set of states defined by the above grammar
2 At : the set of transition labels
3 −→ ⊆ P × At × P, the least relation satisfying the above rules.

For S ∈ P, let RS be the set of states in P which are reachable from
S via −→, LTSS

def
= (RS ,At ,−→ ∩ (RS × At ×RS), S)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 82 / 113

Advantages

Compositionality

Induction principles

Natural induction principle

, but also

Structural induction

Computational induction

Derivation induction

Axiomatic reasoning

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 83 / 113

Advantages

Compositionality

Induction principles

Natural induction principle

, but also

Structural induction

Computational induction

Derivation induction

Axiomatic reasoning

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 83 / 113

Advantages

Compositionality

Induction principles

Natural induction principle

, but also

Structural induction

Computational induction

Derivation induction

Axiomatic reasoning

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 83 / 113

Advantages

Compositionality

Induction principles

Natural induction principle

, but also

Structural induction

Computational induction

Derivation induction

Axiomatic reasoning

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 83 / 113

Advantages

Compositionality

Induction principles

Natural induction principle, but also

Structural induction

Computational induction

Derivation induction

Axiomatic reasoning

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 83 / 113

Advantages

Compositionality

Induction principles

Natural induction principle, but also

Structural induction

Computational induction

Derivation induction

Axiomatic reasoning

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 83 / 113

Advantages

Compositionality

Induction principles

Natural induction principle, but also

Structural induction

Computational induction

Derivation induction

Axiomatic reasoning

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 83 / 113

Advantages

Compositionality

Induction principles

Natural induction principle, but also

Structural induction

Computational induction

Derivation induction

Axiomatic reasoning

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 83 / 113

Advantages

Compositionality

Induction principles

Natural induction principle, but also

Structural induction

Computational induction

Derivation induction

Axiomatic reasoning

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 83 / 113

Advantages

Compositionality

Induction principles

Natural induction principle, but also

Structural induction

Computational induction

Derivation induction

Axiomatic reasoning

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 83 / 113

A
Temporal Logics

Approach to
Requirement Specification

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 84 / 113

Computation Tree Structures

Description of behaviour of a system by means of the set of its
computations:

Computation: (possibly) infinite sequence of states which are reached,
and transitions which take place during a single system run from the
initial state;

Set of computations: represented as an (infinite) tree;

A Computation Tree associated to each system

A computation of the system: a path in the CT

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 85 / 113

Computation Tree Structures

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

Rf
s0

s1

s4

s0

s0s0

s2

s5

Rs

Rs

E

E

Rf

E

s0 s1 s2 s2 s2

s0 s4 s0 s4 s0 s1

Rs Rf Rf Rf

Rs E Rs Rs

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 86 / 113

Computation Tree Structures

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

Rf
s0

s1

s4

s0

s0s0

s2

s5

Rs

Rs

E

E

Rf

E

s0 s1 s2 s2 s2

s0 s4 s0 s4 s0 s1

Rs Rf Rf Rf

Rs E Rs Rs

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 86 / 113

Computation Tree Structures

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5
Rf

s0

s1

s4

s0

s0s0

s2

s5

Rs

Rs

E

E

Rf

E

s0 s1 s2 s2 s2

s0 s4 s0 s4 s0 s1

Rs Rf Rf Rf

Rs E Rs Rs

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 86 / 113

Computation Tree Structures

Graphical notation (...)

Rf
s0

s1

s4

s0

s0s0

s2

s5

Rs

Rs

E

E

Rf

Mathematical definition

e.g. in the framework of formal (ω-)languages or Computation Trees

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 87 / 113

Computation Tree Structures

Graphical notation (...)

Rf
s0

s1

s4

s0

s0s0

s2

s5

Rs

Rs

E

E

Rf

Mathematical definition

e.g. in the framework of formal (ω-)languages or Computation Trees

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 87 / 113

Computation Tree Structures

Graphical notation (...)

Rf
s0

s1

s4

s0

s0s0

s2

s5

Rs

Rs

E

E

Rf

Mathematical definition

e.g. in the framework of formal (ω-)languages or Computation Trees

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 87 / 113

Properties of paths
REMEMBER: paths represent system computations (traces, logs ...)!

Rs

RfRs

RfRs Rf

ERs Rf Rf

RsRs Rf Rf E

ERs Rf Rf E Rs

RsRs Rf Rf E Rs E

RfRs Rf Rf E Rs E Rs

ERs Rf Rf E Rs E Rs Rf

ERs Rf Rf E Rs E Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 88 / 113

Properties of paths
REMEMBER: paths represent system computations (traces, logs ...)!

Rs

RfRs

RfRs Rf

ERs Rf Rf

RsRs Rf Rf E

ERs Rf Rf E Rs

RsRs Rf Rf E Rs E

RfRs Rf Rf E Rs E Rs

ERs Rf Rf E Rs E Rs Rf

ERs Rf Rf E Rs E Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 88 / 113

Properties of paths
REMEMBER: paths represent system computations (traces, logs ...)!

Rs

RfRs

RfRs Rf

ERs Rf Rf

RsRs Rf Rf E

ERs Rf Rf E Rs

RsRs Rf Rf E Rs E

RfRs Rf Rf E Rs E Rs

ERs Rf Rf E Rs E Rs Rf

ERs Rf Rf E Rs E Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 88 / 113

Properties of paths
REMEMBER: paths represent system computations (traces, logs ...)!

Rs

RfRs

RfRs Rf

ERs Rf Rf

RsRs Rf Rf E

ERs Rf Rf E Rs

RsRs Rf Rf E Rs E

RfRs Rf Rf E Rs E Rs

ERs Rf Rf E Rs E Rs Rf

ERs Rf Rf E Rs E Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 88 / 113

Properties of paths
REMEMBER: paths represent system computations (traces, logs ...)!

Rs

RfRs

RfRs Rf

ERs Rf Rf

RsRs Rf Rf E

ERs Rf Rf E Rs

RsRs Rf Rf E Rs E

RfRs Rf Rf E Rs E Rs

ERs Rf Rf E Rs E Rs Rf

ERs Rf Rf E Rs E Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 88 / 113

Properties of paths
REMEMBER: paths represent system computations (traces, logs ...)!

Rs

RfRs

RfRs Rf

ERs Rf Rf

RsRs Rf Rf E

ERs Rf Rf E Rs

RsRs Rf Rf E Rs E

RfRs Rf Rf E Rs E Rs

ERs Rf Rf E Rs E Rs Rf

ERs Rf Rf E Rs E Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 88 / 113

Properties of paths
REMEMBER: paths represent system computations (traces, logs ...)!

Rs

RfRs

RfRs Rf

ERs Rf Rf

RsRs Rf Rf E

ERs Rf Rf E Rs

RsRs Rf Rf E Rs E

RfRs Rf Rf E Rs E Rs

ERs Rf Rf E Rs E Rs Rf

ERs Rf Rf E Rs E Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 88 / 113

Properties of paths
REMEMBER: paths represent system computations (traces, logs ...)!

Rs

RfRs

RfRs Rf

ERs Rf Rf

RsRs Rf Rf E

ERs Rf Rf E Rs

RsRs Rf Rf E Rs E

RfRs Rf Rf E Rs E Rs

ERs Rf Rf E Rs E Rs Rf

ERs Rf Rf E Rs E Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 88 / 113

Properties of paths
REMEMBER: paths represent system computations (traces, logs ...)!

Rs

RfRs

RfRs Rf

ERs Rf Rf

RsRs Rf Rf E

ERs Rf Rf E Rs

RsRs Rf Rf E Rs E

RfRs Rf Rf E Rs E Rs

ERs Rf Rf E Rs E Rs Rf

ERs Rf Rf E Rs E Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 88 / 113

Properties of paths
REMEMBER: paths represent system computations (traces, logs ...)!

Rs

RfRs

RfRs Rf

ERs Rf Rf

RsRs Rf Rf E

ERs Rf Rf E Rs

RsRs Rf Rf E Rs E

RfRs Rf Rf E Rs E Rs

ERs Rf Rf E Rs E Rs Rf

ERs Rf Rf E Rs E Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 88 / 113

Properties of paths
REMEMBER: paths represent system computations (traces, logs ...)!

Rs

RfRs

RfRs Rf

ERs Rf Rf

RsRs Rf Rf E

ERs Rf Rf E Rs

RsRs Rf Rf E Rs E

RfRs Rf Rf E Rs E Rs

ERs Rf Rf E Rs E Rs Rf

ERs Rf Rf E Rs E Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 88 / 113

Properties of paths
REMEMBER: paths represent system computations (traces, logs ...)!

ERs Rf Rf E Rs E Rs Rf

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

textually, the word

s0.Rs.s1.Rf.s2.Rf.s2.E.s3.Rs.s2.E.s3.Rs.s2.Rf.s2.E.s3.Rs.s2.Rf.s2.E.s3.Rs.s2

... forever Rf.s2.E.s3.Rs.s2

that is, in ω-languages notation

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 89 / 113

Properties of paths
REMEMBER: paths represent system computations (traces, logs ...)!

ERs Rf Rf E Rs E Rs Rf

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

textually, the word

s0.Rs.s1.Rf.s2.Rf.s2.E.s3.Rs.s2.E.s3.Rs.s2.Rf.s2.E.s3.Rs.s2.Rf.s2.E.s3.Rs.s2

... forever Rf.s2.E.s3.Rs.s2

that is, in ω-languages notation

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 89 / 113

Properties of paths
REMEMBER: paths represent system computations (traces, logs ...)!

ERs Rf Rf E Rs E Rs Rf

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

textually, the word

s0.Rs.s1.Rf.s2.Rf.s2.E.s3.Rs.s2.E.s3.Rs.s2.Rf.s2.E.s3.Rs.s2.Rf.s2.E.s3.Rs.s2

... forever Rf.s2.E.s3.Rs.s2

that is, in ω-languages notation

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 89 / 113

Properties of paths
REMEMBER: paths represent system computations (traces, logs ...)!

ERs Rf Rf E Rs E Rs Rf

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

textually, the word

s0.Rs.s1.Rf.s2.Rf.s2.E.s3.Rs.s2.E.s3.Rs.s2.Rf.s2.E.s3.Rs.s2.Rf.s2.E.s3.Rs.s2

... forever Rf.s2.E.s3.Rs.s2

that is, in ω-languages notation

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 89 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

eventually, state s2 is reached in the path

3in(s2)

A set of atomic predicates (tt, in(s), x > 0, . . . a, b, . . .) over/labeling states

state s3 is never reached in the path

¬3in(s3)

the system is always in a state different from s4 and s5 in the path

2¬(in(s4) ∨ in(s5))

2Φ ≡ ¬3¬Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 90 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

eventually, state s2 is reached in the path

3in(s2)

A set of atomic predicates (tt, in(s), x > 0, . . . a, b, . . .) over/labeling states

state s3 is never reached in the path

¬3in(s3)

the system is always in a state different from s4 and s5 in the path

2¬(in(s4) ∨ in(s5))

2Φ ≡ ¬3¬Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 90 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

eventually, state s2 is reached in the path

3in(s2)

A set of atomic predicates (tt, in(s), x > 0, . . . a, b, . . .) over/labeling states

state s3 is never reached in the path

¬3in(s3)

the system is always in a state different from s4 and s5 in the path

2¬(in(s4) ∨ in(s5))

2Φ ≡ ¬3¬Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 90 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

eventually, state s2 is reached in the path

3in(s2)

A set of atomic predicates (tt, in(s), x > 0, . . . a, b, . . .) over/labeling states

state s3 is never reached in the path

¬3in(s3)

the system is always in a state different from s4 and s5 in the path

2¬(in(s4) ∨ in(s5))

2Φ ≡ ¬3¬Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 90 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

eventually, state s2 is reached in the path

3in(s2)

A set of atomic predicates (tt, in(s), x > 0, . . . a, b, . . .) over/labeling states

state s3 is never reached in the path

¬3in(s3)

the system is always in a state different from s4 and s5 in the path

2¬(in(s4) ∨ in(s5))

2Φ ≡ ¬3¬Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 90 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

eventually, state s2 is reached in the path

3in(s2)

A set of atomic predicates (tt, in(s), x > 0, . . . a, b, . . .) over/labeling states

state s3 is never reached in the path

¬3in(s3)

the system is always in a state different from s4 and s5 in the path

2¬(in(s4) ∨ in(s5))

2Φ ≡ ¬3¬Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 90 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

eventually, state s2 is reached in the path

3in(s2)

A set of atomic predicates (tt, in(s), x > 0, . . . a, b, . . .) over/labeling states

state s3 is never reached in the path

¬3in(s3)

the system is always in a state different from s4 and s5 in the path

2¬(in(s4) ∨ in(s5))

2Φ ≡ ¬3¬Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 90 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

eventually, state s2 is reached in the path

3in(s2)

A set of atomic predicates (tt, in(s), x > 0, . . . a, b, . . .) over/labeling states

state s3 is never reached in the path

¬3in(s3)

the system is always in a state different from s4 and s5 in the path

2¬(in(s4) ∨ in(s5))

2Φ ≡ ¬3¬Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 90 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

eventually, state s2 is reached in the path

3in(s2)

A set of atomic predicates (tt, in(s), x > 0, . . . a, b, . . .) over/labeling states

state s3 is never reached in the path

¬3in(s3)

the system is always in a state different from s4 and s5 in the path

2¬(in(s4) ∨ in(s5))

2Φ ≡ ¬3¬Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 90 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

eventually, state s2 is reached in the path

3in(s2)

A set of atomic predicates (tt, in(s), x > 0, . . . a, b, . . .) over/labeling states

state s3 is never reached in the path

¬3in(s3)

the system is always in a state different from s4 and s5 in the path

2¬(in(s4) ∨ in(s5))

2Φ ≡ ¬3¬Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 90 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

eventually, state s2 is reached in the path

3in(s2)

A set of atomic predicates (tt, in(s), x > 0, . . . a, b, . . .) over/labeling states

state s3 is never reached in the path

¬3in(s3)

the system is always in a state different from s4 and s5 in the path

2¬(in(s4) ∨ in(s5))

2Φ ≡ ¬3¬Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 90 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

eventually, state s2 is reached in the path

3in(s2)

A set of atomic predicates (tt, in(s), x > 0, . . . a, b, . . .) over/labeling states

state s3 is never reached in the path

¬3in(s3)

the system is always in a state different from s4 and s5 in the path

2¬(in(s4) ∨ in(s5))

2Φ ≡ ¬3¬Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 90 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

eventually, state s2 is reached in the path

3in(s2)

A set of atomic predicates (tt, in(s), x > 0, . . . a, b, . . .) over/labeling states

state s3 is never reached in the path

¬3in(s3)

the system is always in a state different from s4 and s5 in the path

2¬(in(s4) ∨ in(s5))

2Φ ≡ ¬3¬Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 90 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

s0, s1, and s2, and only them, are visited until s3 is reached, in the
path

s3 is eventually reached in the path
in the path, the only states which the system can be in, before reaching
s3, are s0, s1, and s2.

(in(s0) ∨ in(s1) ∨ in(s2)) U in(s3)

3Φ ≡ tt U Φ
the next state reached is s1

X in(s1)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 91 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

s0, s1, and s2, and only them, are visited until s3 is reached, in the
path

s3 is eventually reached in the path
in the path, the only states which the system can be in, before reaching
s3, are s0, s1, and s2.

(in(s0) ∨ in(s1) ∨ in(s2)) U in(s3)

3Φ ≡ tt U Φ
the next state reached is s1

X in(s1)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 91 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

s0, s1, and s2, and only them, are visited until s3 is reached, in the
path

s3 is eventually reached in the path

in the path, the only states which the system can be in, before reaching
s3, are s0, s1, and s2.

(in(s0) ∨ in(s1) ∨ in(s2)) U in(s3)

3Φ ≡ tt U Φ
the next state reached is s1

X in(s1)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 91 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

s0, s1, and s2, and only them, are visited until s3 is reached, in the
path

s3 is eventually reached in the path
in the path, the only states which the system can be in, before reaching
s3, are s0, s1, and s2.

(in(s0) ∨ in(s1) ∨ in(s2)) U in(s3)

3Φ ≡ tt U Φ
the next state reached is s1

X in(s1)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 91 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

s0, s1, and s2, and only them, are visited until s3 is reached, in the
path

s3 is eventually reached in the path
in the path, the only states which the system can be in, before reaching
s3, are s0, s1, and s2.

(in(s0) ∨ in(s1) ∨ in(s2)) U in(s3)

3Φ ≡ tt U Φ
the next state reached is s1

X in(s1)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 91 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

s0, s1, and s2, and only them, are visited until s3 is reached, in the
path

s3 is eventually reached in the path
in the path, the only states which the system can be in, before reaching
s3, are s0, s1, and s2.

(in(s0) ∨ in(s1) ∨ in(s2)) U in(s3)

3Φ ≡ tt U Φ
the next state reached is s1

X in(s1)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 91 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

s0, s1, and s2, and only them, are visited until s3 is reached, in the
path

s3 is eventually reached in the path
in the path, the only states which the system can be in, before reaching
s3, are s0, s1, and s2.

(in(s0) ∨ in(s1) ∨ in(s2)) U in(s3)

3Φ ≡ tt U Φ

the next state reached is s1

X in(s1)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 91 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

s0, s1, and s2, and only them, are visited until s3 is reached, in the
path

s3 is eventually reached in the path
in the path, the only states which the system can be in, before reaching
s3, are s0, s1, and s2.

(in(s0) ∨ in(s1) ∨ in(s2)) U in(s3)

3Φ ≡ tt U Φ
the next state reached is s1

X in(s1)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 91 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

s0, s1, and s2, and only them, are visited until s3 is reached, in the
path

s3 is eventually reached in the path
in the path, the only states which the system can be in, before reaching
s3, are s0, s1, and s2.

(in(s0) ∨ in(s1) ∨ in(s2)) U in(s3)

3Φ ≡ tt U Φ
the next state reached is s1

X in(s1)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 91 / 113

Properties of paths are expressed in logic
REMEMBER: paths represent system computations (traces, logs ...)!

s0.Rs.s1.(Rf.s2)2.E.s3.Rs.s2.E.s3(Rs.s2.Rf.s2.E.s3)ω

s0, s1, and s2, and only them, are visited until s3 is reached, in the
path

s3 is eventually reached in the path
in the path, the only states which the system can be in, before reaching
s3, are s0, s1, and s2.

(in(s0) ∨ in(s1) ∨ in(s2)) U in(s3)

3Φ ≡ tt U Φ
the next state reached is s1

X in(s1)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 91 / 113

Properties of paths: Path Formulae
REMEMBER: paths represent system computations (traces, logs ...)!

Formal Syntax definition of Path Formulae

ϕ ::= Φ U Φ (strong until)
| X Φ (next state)

| 3Φ (eventually: 3Φ ≡ tt U Φ)
| 2Φ (always: 2Φ ≡ ¬3¬Φ)

Φ is a State Formula, including Atomic propositions
(tt, in(s), x > 0, . . . a, b, . . .)

Basic components

Atomic (state) Formulae

Ways for composing them

∧, ∨, ¬, U , X , 3, 2

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 92 / 113

Properties of paths: Path Formulae
REMEMBER: paths represent system computations (traces, logs ...)!

Formal Syntax definition of Path Formulae

ϕ ::= Φ U Φ (strong until)
| X Φ (next state)
| 3Φ (eventually: 3Φ ≡ tt U Φ)
| 2Φ (always: 2Φ ≡ ¬3¬Φ)

Φ is a State Formula, including Atomic propositions
(tt, in(s), x > 0, . . . a, b, . . .)

Basic components

Atomic (state) Formulae

Ways for composing them

∧, ∨, ¬, U , X , 3, 2

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 92 / 113

Properties of paths: Path Formulae
REMEMBER: paths represent system computations (traces, logs ...)!

Formal Syntax definition of Path Formulae

ϕ ::= Φ U Φ (strong until)
| X Φ (next state)
| 3Φ (eventually: 3Φ ≡ tt U Φ)
| 2Φ (always: 2Φ ≡ ¬3¬Φ)

Φ is a State Formula

, including Atomic propositions
(tt, in(s), x > 0, . . . a, b, . . .)

Basic components

Atomic (state) Formulae

Ways for composing them

∧, ∨, ¬, U , X , 3, 2

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 92 / 113

Properties of paths: Path Formulae
REMEMBER: paths represent system computations (traces, logs ...)!

Formal Syntax definition of Path Formulae

ϕ ::= Φ U Φ (strong until)
| X Φ (next state)
| 3Φ (eventually: 3Φ ≡ tt U Φ)
| 2Φ (always: 2Φ ≡ ¬3¬Φ)

Φ is a State Formula, including Atomic propositions
(tt, in(s), x > 0, . . . a, b, . . .)

Basic components

Atomic (state) Formulae

Ways for composing them

∧, ∨, ¬, U , X , 3, 2

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 92 / 113

Properties of paths: Path Formulae
REMEMBER: paths represent system computations (traces, logs ...)!

Formal Syntax definition of Path Formulae

ϕ ::= Φ U Φ (strong until)
| X Φ (next state)
| 3Φ (eventually: 3Φ ≡ tt U Φ)
| 2Φ (always: 2Φ ≡ ¬3¬Φ)

Φ is a State Formula, including Atomic propositions
(tt, in(s), x > 0, . . . a, b, . . .)

Basic components

Atomic (state) Formulae

Ways for composing them

∧, ∨, ¬, U , X , 3, 2

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 92 / 113

Properties of paths: Path Formulae
REMEMBER: paths represent system computations (traces, logs ...)!

Formal Syntax definition of Path Formulae

ϕ ::= Φ U Φ (strong until)
| X Φ (next state)
| 3Φ (eventually: 3Φ ≡ tt U Φ)
| 2Φ (always: 2Φ ≡ ¬3¬Φ)

Φ is a State Formula, including Atomic propositions
(tt, in(s), x > 0, . . . a, b, . . .)

Basic components
Atomic (state) Formulae

Ways for composing them

∧, ∨, ¬, U , X , 3, 2

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 92 / 113

Properties of paths: Path Formulae
REMEMBER: paths represent system computations (traces, logs ...)!

Formal Syntax definition of Path Formulae

ϕ ::= Φ U Φ (strong until)
| X Φ (next state)
| 3Φ (eventually: 3Φ ≡ tt U Φ)
| 2Φ (always: 2Φ ≡ ¬3¬Φ)

Φ is a State Formula, including Atomic propositions
(tt, in(s), x > 0, . . . a, b, . . .)

Basic components
Atomic (state) Formulae

Ways for composing them
∧, ∨, ¬, U , X , 3, 2

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 92 / 113

From logic formulae to computations
via Formal Semantics

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Satisfaction Relation)

Mathematical Objects
(Paths & CTS)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 93 / 113

From logic formulae to computations
via Formal Semantics

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Satisfaction Relation)

Mathematical Objects
(Paths & CTS)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 93 / 113

From logic formulae to computations
via Formal Semantics

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Satisfaction Relation)

Mathematical Objects
(Paths & CTS)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 93 / 113

From logic formulae to computations
via Formal Semantics

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Satisfaction Relation)

Mathematical Objects
(Paths & CTS)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 93 / 113

From logic formulae to computations
via Formal Semantics

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Satisfaction Relation)

Mathematical Objects
(Paths & CTS)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 93 / 113

From logic formulae to computations
via Formal Semantics

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Satisfaction Relation)

Mathematical Objects
(Paths & CTS)

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 93 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

In all paths starting from s0, s0 will eventually be reached (again)

∀X ∀3in(so)

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

In all paths starting from s0, one of s0, s3, or s6 will eventually be
reached

∀X ∀3(in(s0) ∨ in(s3) ∨ in(s6))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 94 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

In all paths starting from s0, s0 will eventually be reached (again)

∀X ∀3in(so)

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

In all paths starting from s0, one of s0, s3, or s6 will eventually be
reached

∀X ∀3(in(s0) ∨ in(s3) ∨ in(s6))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 94 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

In all paths starting from s0, s0 will eventually be reached (again)

∀X ∀3in(so)

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

In all paths starting from s0, one of s0, s3, or s6 will eventually be
reached

∀X ∀3(in(s0) ∨ in(s3) ∨ in(s6))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 94 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

There is a path starting from s0, s0 will eventually be reached (again)

∃X ∃3in(so)

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

In all paths starting from s0, one of s0, s3, or s6 will eventually be
reached

∀X ∀3(in(s0) ∨ in(s3) ∨ in(s6))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 94 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

In all paths starting from s0, s0 will eventually be reached (again)

∀X ∀3in(so)

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

In all paths starting from s0, one of s0, s3, or s6 will eventually be
reached

∀X ∀3(in(s0) ∨ in(s3) ∨ in(s6))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 94 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

In all paths starting from s0, s0 will eventually be reached (again)

∀X ∀3in(so)

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

In all paths starting from s0, one of s0, s3, or s6 will eventually be
reached

∀X ∀3(in(s0) ∨ in(s3) ∨ in(s6))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 94 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

In all paths starting from s0, s0 will eventually be reached (again)

∀X ∀3in(so)

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

In all paths starting from s0, one of s0, s3, or s6 will eventually be
reached

∀X ∀3(in(s0) ∨ in(s3) ∨ in(s6))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 94 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

In all paths starting from s0, s0 will eventually be reached (again)

∀X ∀3in(so)

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

In all paths starting from s0, one of s0, s3, or s6 will eventually be
reached

∀X ∀3(in(s0) ∨ in(s3) ∨ in(s6))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 94 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

s0 will eventually be reached from all states in all computations

∀2∀3in(s0)

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

Whenever s2 is reached s4 will be reached

∀2(in(s2)⇒ ∀3in(s4))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 95 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

s0 will eventually be reached from all states in all computations

∀2∀3in(s0)

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

Whenever s2 is reached s4 will be reached

∀2(in(s2)⇒ ∀3in(s4))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 95 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

s0 will eventually be reached from all states in all computations

∀2∀3in(s0)

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

Whenever s2 is reached s4 will be reached

∀2(in(s2)⇒ ∀3in(s4))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 95 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

s0 will eventually be reached from all states in all computations

∀2∀3in(s0)

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

Whenever s2 is reached s4 will be reached

∀2(in(s2)⇒ ∀3in(s4))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 95 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

s0 will eventually be reached from all states in all computations

∀2∀3in(s0)

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

Whenever s2 is reached s4 will be reached

∀2(in(s2)⇒ ∀3in(s4))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 95 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

s0 will eventually be reached from all states in all computations

∀2∀3in(s0)

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

Whenever s2 is reached s4 will be reached

∀2(in(s2)⇒ ∀3in(s4))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 95 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

s0 will eventually be reached from all states in all computations

∀2∀3in(s0)

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

Whenever s2 is reached s4 will be reached

∀2(in(s2)⇒ ∀3in(s4))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 95 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

s0 will eventually be reached from all states in all computations

∀2∀3in(s0)

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

Whenever s2 is reached s4 will be reached

∀2(in(s2)⇒ ∀3in(s4))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 95 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

s0 will eventually be reached from all states in all computations

∀2∀3in(s0)

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

Whenever s2 is reached s4 will be reached

∀2(in(s2)⇒ ∀3in(s4))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 95 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

There is a path in which eventually s2 is reached and then s4 is never
reached

∃3(in(s2) ∧ ∀2¬in(s4))

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

It cannot be that s1 is reached without having first reached s0 or s6

¬∃(¬(in(s0) ∨ in(s6)) U in(s1))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 96 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

There is a path in which eventually s2 is reached and then s4 is never
reached

∃3(in(s2) ∧ ∀2¬in(s4))

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

It cannot be that s1 is reached without having first reached s0 or s6

¬∃(¬(in(s0) ∨ in(s6)) U in(s1))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 96 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

There is a path in which eventually s2 is reached and then s4 is never
reached

∃3(in(s2) ∧ ∀2¬in(s4))

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

It cannot be that s1 is reached without having first reached s0 or s6

¬∃(¬(in(s0) ∨ in(s6)) U in(s1))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 96 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

There is a path in which eventually s2 is reached and then s4 is never
reached

∃3(in(s2) ∧ ∀2¬in(s4))

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

It cannot be that s1 is reached without having first reached s0 or s6

¬∃(¬(in(s0) ∨ in(s6)) U in(s1))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 96 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

There is a path in which eventually s2 is reached and then s4 is never
reached

∃3(in(s2) ∧ ∀2¬in(s4))

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

It cannot be that s1 is reached without having first reached s0 or s6

¬∃(¬(in(s0) ∨ in(s6)) U in(s1))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 96 / 113

Properties of states are expressed in logic
REMEMBER: paths start from states and are collected in a CT

There is a path in which eventually s2 is reached and then s4 is never
reached

∃3(in(s2) ∧ ∀2¬in(s4))

s6

Rs E

Rf Rf E
Rs

Rs

Rs

Rs

E
Rf

Rf

ERs

s0

s1 s2 s3

s4 s5

It cannot be that s1 is reached without having first reached s0 or s6

¬∃(¬(in(s0) ∨ in(s6)) U in(s1))

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 96 / 113

A Temporal Logics approach to
Requirements specification

1 Logic formulae

, defined via a Formal syntax

, often with (graphical)
tool support;

2 CT

, the reference Mathematical Objects

, equipped with proper
operations and tightly related to LTS;

3 A relation between formulae and CT (states of / paths over LTS)

, the
Satisfaction Relation

, i.e. the Formal Semantics definition;

4 Logic formulae manipulation rules

, i.e. Axiomatizations and deduction
systems.

;

5 Automatic verification: i.e. model-checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 97 / 113

A Temporal Logics approach to
Requirements specification

1 Logic formulae

, defined via a Formal syntax

, often with (graphical)
tool support;

2 CT

, the reference Mathematical Objects

, equipped with proper
operations and tightly related to LTS;

3 A relation between formulae and CT (states of / paths over LTS)

, the
Satisfaction Relation

, i.e. the Formal Semantics definition;

4 Logic formulae manipulation rules

, i.e. Axiomatizations and deduction
systems.

;

5 Automatic verification: i.e. model-checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 97 / 113

A Temporal Logics approach to
Requirements specification

1 Logic formulae, defined via a Formal syntax

, often with (graphical)
tool support;

2 CT

, the reference Mathematical Objects

, equipped with proper
operations and tightly related to LTS;

3 A relation between formulae and CT (states of / paths over LTS)

, the
Satisfaction Relation

, i.e. the Formal Semantics definition;

4 Logic formulae manipulation rules

, i.e. Axiomatizations and deduction
systems.

;

5 Automatic verification: i.e. model-checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 97 / 113

A Temporal Logics approach to
Requirements specification

1 Logic formulae, defined via a Formal syntax, often with (graphical)
tool support;

2 CT

, the reference Mathematical Objects

, equipped with proper
operations and tightly related to LTS;

3 A relation between formulae and CT (states of / paths over LTS)

, the
Satisfaction Relation

, i.e. the Formal Semantics definition;

4 Logic formulae manipulation rules

, i.e. Axiomatizations and deduction
systems.

;

5 Automatic verification: i.e. model-checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 97 / 113

A Temporal Logics approach to
Requirements specification

1 Logic formulae, defined via a Formal syntax, often with (graphical)
tool support;

2 CT

, the reference Mathematical Objects

, equipped with proper
operations and tightly related to LTS;

3 A relation between formulae and CT (states of / paths over LTS)

, the
Satisfaction Relation

, i.e. the Formal Semantics definition;

4 Logic formulae manipulation rules

, i.e. Axiomatizations and deduction
systems.

;

5 Automatic verification: i.e. model-checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 97 / 113

A Temporal Logics approach to
Requirements specification

1 Logic formulae, defined via a Formal syntax, often with (graphical)
tool support;

2 CT, the reference Mathematical Objects

, equipped with proper
operations and tightly related to LTS;

3 A relation between formulae and CT (states of / paths over LTS)

, the
Satisfaction Relation

, i.e. the Formal Semantics definition;

4 Logic formulae manipulation rules

, i.e. Axiomatizations and deduction
systems.

;

5 Automatic verification: i.e. model-checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 97 / 113

A Temporal Logics approach to
Requirements specification

1 Logic formulae, defined via a Formal syntax, often with (graphical)
tool support;

2 CT, the reference Mathematical Objects, equipped with proper
operations and tightly related to LTS;

3 A relation between formulae and CT (states of / paths over LTS)

, the
Satisfaction Relation

, i.e. the Formal Semantics definition;

4 Logic formulae manipulation rules

, i.e. Axiomatizations and deduction
systems.

;

5 Automatic verification: i.e. model-checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 97 / 113

A Temporal Logics approach to
Requirements specification

1 Logic formulae, defined via a Formal syntax, often with (graphical)
tool support;

2 CT, the reference Mathematical Objects, equipped with proper
operations and tightly related to LTS;

3 A relation between formulae and CT (states of / paths over LTS)

, the
Satisfaction Relation

, i.e. the Formal Semantics definition;

4 Logic formulae manipulation rules

, i.e. Axiomatizations and deduction
systems.

;

5 Automatic verification: i.e. model-checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 97 / 113

A Temporal Logics approach to
Requirements specification

1 Logic formulae, defined via a Formal syntax, often with (graphical)
tool support;

2 CT, the reference Mathematical Objects, equipped with proper
operations and tightly related to LTS;

3 A relation between formulae and CT (states of / paths over LTS), the
Satisfaction Relation

, i.e. the Formal Semantics definition;

4 Logic formulae manipulation rules

, i.e. Axiomatizations and deduction
systems.

;

5 Automatic verification: i.e. model-checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 97 / 113

A Temporal Logics approach to
Requirements specification

1 Logic formulae, defined via a Formal syntax, often with (graphical)
tool support;

2 CT, the reference Mathematical Objects, equipped with proper
operations and tightly related to LTS;

3 A relation between formulae and CT (states of / paths over LTS), the
Satisfaction Relation, i.e. the Formal Semantics definition;

4 Logic formulae manipulation rules

, i.e. Axiomatizations and deduction
systems.

;

5 Automatic verification: i.e. model-checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 97 / 113

A Temporal Logics approach to
Requirements specification

1 Logic formulae, defined via a Formal syntax, often with (graphical)
tool support;

2 CT, the reference Mathematical Objects, equipped with proper
operations and tightly related to LTS;

3 A relation between formulae and CT (states of / paths over LTS), the
Satisfaction Relation, i.e. the Formal Semantics definition;

4 Logic formulae manipulation rules

, i.e. Axiomatizations and deduction
systems.

;

5 Automatic verification: i.e. model-checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 97 / 113

A Temporal Logics approach to
Requirements specification

1 Logic formulae, defined via a Formal syntax, often with (graphical)
tool support;

2 CT, the reference Mathematical Objects, equipped with proper
operations and tightly related to LTS;

3 A relation between formulae and CT (states of / paths over LTS), the
Satisfaction Relation, i.e. the Formal Semantics definition;

4 Logic formulae manipulation rules, i.e. Axiomatizations and deduction
systems.;

5 Automatic verification: i.e. model-checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 97 / 113

A Temporal Logics approach to
Requirements specification

1 Logic formulae, defined via a Formal syntax, often with (graphical)
tool support;

2 CT, the reference Mathematical Objects, equipped with proper
operations and tightly related to LTS;

3 A relation between formulae and CT (states of / paths over LTS), the
Satisfaction Relation, i.e. the Formal Semantics definition;

4 Logic formulae manipulation rules, i.e. Axiomatizations and deduction
systems.;

5 Automatic verification: i.e. model-checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 97 / 113

An example (Clarke et Al. CTL-like)

Formal Syntax definition:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | ∀ϕ | ∃ϕ
ϕ ::= X Φ | Φ U Φ | 3Φ | 2Φ

Formal Semantics definition:

s |= tt s |= a iff a ∈ L(s) s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= Φ1 ∨ Φ2 iff s |= Φ1 or s |= Φ2

s |= ∀ϕ iff for all paths γ with γ[0] = s: γ |= ϕ
s |= ∃ϕ iff there exists a path γ with γ[0] = s: γ |= ϕ
γ |= X Φ iff γ[1] |= Φ
γ |= Φ1 U Φ2 iff there exists j ≥ 0 s.t. γ[j] |= Φ2 and

γ[i] |= Φ1, for all 0 ≤ i < j

Formulae manipulation:

∀2Φ⇒ ∃2Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 98 / 113

An example (Clarke et Al. CTL-like)

Formal Syntax definition:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | ∀ϕ | ∃ϕ
ϕ ::= X Φ | Φ U Φ | 3Φ | 2Φ

Formal Semantics definition:

s |= tt s |= a iff a ∈ L(s) s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= Φ1 ∨ Φ2 iff s |= Φ1 or s |= Φ2

s |= ∀ϕ iff for all paths γ with γ[0] = s: γ |= ϕ
s |= ∃ϕ iff there exists a path γ with γ[0] = s: γ |= ϕ
γ |= X Φ iff γ[1] |= Φ
γ |= Φ1 U Φ2 iff there exists j ≥ 0 s.t. γ[j] |= Φ2 and

γ[i] |= Φ1, for all 0 ≤ i < j

Formulae manipulation:

∀2Φ⇒ ∃2Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 98 / 113

An example (Clarke et Al. CTL-like)

Formal Syntax definition:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | ∀ϕ | ∃ϕ
ϕ ::= X Φ | Φ U Φ | 3Φ | 2Φ

Formal Semantics definition:

s |= tt s |= a iff a ∈ L(s) s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= Φ1 ∨ Φ2 iff s |= Φ1 or s |= Φ2

s |= ∀ϕ iff for all paths γ with γ[0] = s: γ |= ϕ
s |= ∃ϕ iff there exists a path γ with γ[0] = s: γ |= ϕ
γ |= X Φ iff γ[1] |= Φ
γ |= Φ1 U Φ2 iff there exists j ≥ 0 s.t. γ[j] |= Φ2 and

γ[i] |= Φ1, for all 0 ≤ i < j

Formulae manipulation:

∀2Φ⇒ ∃2Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 98 / 113

An example (Clarke et Al. CTL-like)

Formal Syntax definition:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | ∀ϕ | ∃ϕ
ϕ ::= X Φ | Φ U Φ | 3Φ | 2Φ

Formal Semantics definition:

s |= tt

s |= a iff a ∈ L(s) s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= Φ1 ∨ Φ2 iff s |= Φ1 or s |= Φ2

s |= ∀ϕ iff for all paths γ with γ[0] = s: γ |= ϕ
s |= ∃ϕ iff there exists a path γ with γ[0] = s: γ |= ϕ
γ |= X Φ iff γ[1] |= Φ
γ |= Φ1 U Φ2 iff there exists j ≥ 0 s.t. γ[j] |= Φ2 and

γ[i] |= Φ1, for all 0 ≤ i < j

Formulae manipulation:

∀2Φ⇒ ∃2Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 98 / 113

An example (Clarke et Al. CTL-like)

Formal Syntax definition:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | ∀ϕ | ∃ϕ
ϕ ::= X Φ | Φ U Φ | 3Φ | 2Φ

Formal Semantics definition:

s |= tt s |= a iff a ∈ L(s)

s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= Φ1 ∨ Φ2 iff s |= Φ1 or s |= Φ2

s |= ∀ϕ iff for all paths γ with γ[0] = s: γ |= ϕ
s |= ∃ϕ iff there exists a path γ with γ[0] = s: γ |= ϕ
γ |= X Φ iff γ[1] |= Φ
γ |= Φ1 U Φ2 iff there exists j ≥ 0 s.t. γ[j] |= Φ2 and

γ[i] |= Φ1, for all 0 ≤ i < j

Formulae manipulation:

∀2Φ⇒ ∃2Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 98 / 113

An example (Clarke et Al. CTL-like)

Formal Syntax definition:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | ∀ϕ | ∃ϕ
ϕ ::= X Φ | Φ U Φ | 3Φ | 2Φ

Formal Semantics definition:

s |= tt s |= a iff a ∈ L(s) s |= ¬Φ iff not s |= Φ

s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= Φ1 ∨ Φ2 iff s |= Φ1 or s |= Φ2

s |= ∀ϕ iff for all paths γ with γ[0] = s: γ |= ϕ
s |= ∃ϕ iff there exists a path γ with γ[0] = s: γ |= ϕ
γ |= X Φ iff γ[1] |= Φ
γ |= Φ1 U Φ2 iff there exists j ≥ 0 s.t. γ[j] |= Φ2 and

γ[i] |= Φ1, for all 0 ≤ i < j

Formulae manipulation:

∀2Φ⇒ ∃2Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 98 / 113

An example (Clarke et Al. CTL-like)

Formal Syntax definition:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | ∀ϕ | ∃ϕ
ϕ ::= X Φ | Φ U Φ | 3Φ | 2Φ

Formal Semantics definition:

s |= tt s |= a iff a ∈ L(s) s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= Φ1 ∨ Φ2 iff s |= Φ1 or s |= Φ2

s |= ∀ϕ iff for all paths γ with γ[0] = s: γ |= ϕ
s |= ∃ϕ iff there exists a path γ with γ[0] = s: γ |= ϕ
γ |= X Φ iff γ[1] |= Φ
γ |= Φ1 U Φ2 iff there exists j ≥ 0 s.t. γ[j] |= Φ2 and

γ[i] |= Φ1, for all 0 ≤ i < j

Formulae manipulation:

∀2Φ⇒ ∃2Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 98 / 113

An example (Clarke et Al. CTL-like)

Formal Syntax definition:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | ∀ϕ | ∃ϕ
ϕ ::= X Φ | Φ U Φ | 3Φ | 2Φ

Formal Semantics definition:

s |= tt s |= a iff a ∈ L(s) s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= Φ1 ∨ Φ2 iff s |= Φ1 or s |= Φ2

s |= ∀ϕ iff for all paths γ with γ[0] = s: γ |= ϕ
s |= ∃ϕ iff there exists a path γ with γ[0] = s: γ |= ϕ
γ |= X Φ iff γ[1] |= Φ
γ |= Φ1 U Φ2 iff there exists j ≥ 0 s.t. γ[j] |= Φ2 and

γ[i] |= Φ1, for all 0 ≤ i < j

Formulae manipulation:

∀2Φ⇒ ∃2Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 98 / 113

An example (Clarke et Al. CTL-like)

Formal Syntax definition:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | ∀ϕ | ∃ϕ
ϕ ::= X Φ | Φ U Φ | 3Φ | 2Φ

Formal Semantics definition:

s |= tt s |= a iff a ∈ L(s) s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= Φ1 ∨ Φ2 iff s |= Φ1 or s |= Φ2

s |= ∀ϕ iff for all paths γ with γ[0] = s: γ |= ϕ

s |= ∃ϕ iff there exists a path γ with γ[0] = s: γ |= ϕ
γ |= X Φ iff γ[1] |= Φ
γ |= Φ1 U Φ2 iff there exists j ≥ 0 s.t. γ[j] |= Φ2 and

γ[i] |= Φ1, for all 0 ≤ i < j

Formulae manipulation:

∀2Φ⇒ ∃2Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 98 / 113

An example (Clarke et Al. CTL-like)

Formal Syntax definition:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | ∀ϕ | ∃ϕ
ϕ ::= X Φ | Φ U Φ | 3Φ | 2Φ

Formal Semantics definition:

s |= tt s |= a iff a ∈ L(s) s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= Φ1 ∨ Φ2 iff s |= Φ1 or s |= Φ2

s |= ∀ϕ iff for all paths γ with γ[0] = s: γ |= ϕ
s |= ∃ϕ iff there exists a path γ with γ[0] = s: γ |= ϕ

γ |= X Φ iff γ[1] |= Φ
γ |= Φ1 U Φ2 iff there exists j ≥ 0 s.t. γ[j] |= Φ2 and

γ[i] |= Φ1, for all 0 ≤ i < j

Formulae manipulation:

∀2Φ⇒ ∃2Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 98 / 113

An example (Clarke et Al. CTL-like)

Formal Syntax definition:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | ∀ϕ | ∃ϕ
ϕ ::= X Φ | Φ U Φ | 3Φ | 2Φ

Formal Semantics definition:

s |= tt s |= a iff a ∈ L(s) s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= Φ1 ∨ Φ2 iff s |= Φ1 or s |= Φ2

s |= ∀ϕ iff for all paths γ with γ[0] = s: γ |= ϕ
s |= ∃ϕ iff there exists a path γ with γ[0] = s: γ |= ϕ
γ |= X Φ iff γ[1] |= Φ

γ |= Φ1 U Φ2 iff there exists j ≥ 0 s.t. γ[j] |= Φ2 and
γ[i] |= Φ1, for all 0 ≤ i < j

Formulae manipulation:

∀2Φ⇒ ∃2Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 98 / 113

An example (Clarke et Al. CTL-like)

Formal Syntax definition:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | ∀ϕ | ∃ϕ
ϕ ::= X Φ | Φ U Φ | 3Φ | 2Φ

Formal Semantics definition:

s |= tt s |= a iff a ∈ L(s) s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= Φ1 ∨ Φ2 iff s |= Φ1 or s |= Φ2

s |= ∀ϕ iff for all paths γ with γ[0] = s: γ |= ϕ
s |= ∃ϕ iff there exists a path γ with γ[0] = s: γ |= ϕ
γ |= X Φ iff γ[1] |= Φ
γ |= Φ1 U Φ2 iff there exists j ≥ 0 s.t. γ[j] |= Φ2 and

γ[i] |= Φ1, for all 0 ≤ i < j

Formulae manipulation:

∀2Φ⇒ ∃2Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 98 / 113

An example (Clarke et Al. CTL-like)

Formal Syntax definition:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | ∀ϕ | ∃ϕ
ϕ ::= X Φ | Φ U Φ | 3Φ | 2Φ

Formal Semantics definition:

s |= tt s |= a iff a ∈ L(s) s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= Φ1 ∨ Φ2 iff s |= Φ1 or s |= Φ2

s |= ∀ϕ iff for all paths γ with γ[0] = s: γ |= ϕ
s |= ∃ϕ iff there exists a path γ with γ[0] = s: γ |= ϕ
γ |= X Φ iff γ[1] |= Φ
γ |= Φ1 U Φ2 iff there exists j ≥ 0 s.t. γ[j] |= Φ2 and

γ[i] |= Φ1, for all 0 ≤ i < j

Formulae manipulation:

∀2Φ⇒ ∃2Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 98 / 113

An example (Clarke et Al. CTL-like)

Formal Syntax definition:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | ∀ϕ | ∃ϕ
ϕ ::= X Φ | Φ U Φ | 3Φ | 2Φ

Formal Semantics definition:

s |= tt s |= a iff a ∈ L(s) s |= ¬Φ iff not s |= Φ
s |= Φ1 ∧ Φ2 iff s |= Φ1 and s |= Φ2

s |= Φ1 ∨ Φ2 iff s |= Φ1 or s |= Φ2

s |= ∀ϕ iff for all paths γ with γ[0] = s: γ |= ϕ
s |= ∃ϕ iff there exists a path γ with γ[0] = s: γ |= ϕ
γ |= X Φ iff γ[1] |= Φ
γ |= Φ1 U Φ2 iff there exists j ≥ 0 s.t. γ[j] |= Φ2 and

γ[i] |= Φ1, for all 0 ≤ i < j

Formulae manipulation: ∀2Φ⇒ ∃2Φ

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 98 / 113

Formal Methods Model Checkers
Computer support: mechanization of formal manipulation

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 99 / 113

Automatic Model Checking

Requirements Specification
(technical specification)

Design Specification
(system model)

ERROR!!

+
counter example!!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 100 / 113

Automatic Model Checking

Requirements Specification
(technical specification)

Design Specification
(system model)

ERROR!!

+
counter example!!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 100 / 113

Automatic Model Checking

Requirements Specification
(technical specification)

Design Specification
(system model)

ERROR!!

+
counter example!!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 100 / 113

Automatic Model Checking

Requirements Specification
(technical specification)

Design Specification
(system model)

ERROR!!

+
counter example!!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 100 / 113

Automatic Model Checking

Requirements Specification
(technical specification)

Design Specification
(system model)

OK!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 100 / 113

Automatic Model Checking

Requirements Specification
(technical specification)

Design Specification
(system model)

ERROR!!

+
counter example!!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 100 / 113

Automatic Model Checking

Requirements Specification
(technical specification)

Design Specification
(system model)

ERROR!!
+

counter example!!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 100 / 113

Automatic Model Checking

∀2∀3in(s0)

ERROR!!

ERs Rf Rf E Rs E Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 101 / 113

Automatic Model Checking

∀2∀3in(s0)

System
∆
=

RM | [Rs,Rf,E] | Clients

ERROR!!

ERs Rf Rf E Rs E Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 101 / 113

Automatic Model Checking

∀2∀3in(s0)

ERROR!!

ERs Rf Rf E Rs E Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 101 / 113

Automatic Model Checking

∀2∀3in(s0)

ERROR!!

ERs Rf Rf E Rs E Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 101 / 113

Automatic Model Checking

∀2∀3in(s0)

ERROR!!

ERs Rf Rf E Rs E Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 101 / 113

Automatic Model Checking

∀2∀3in(s0)

ERROR!!

ERs Rf Rf E Rs E Rs Rf

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 101 / 113

MC Algorithm Specification

Given: K = (S ,As , L,→) and Φ, returns: Sat(Φ)
def
= {s ∈ S | s |= Φ}.

Sat(tt)
def
= S

Sat(a)
def
= {s ∈ S | a ∈ L(s)}

Sat(¬Φ)
def
= S \ Sat(Φ)

Sat(Φ1 ∧ Φ2)
def
= Sat(Φ1) ∩ Sat(Φ2)

Sat(Φ1 ∨ Φ2)
def
= Sat(Φ1) ∪ Sat(Φ2)

Sat(∀X Φ)
def
= {s ∈ S | ∀ s ′ s.t. s → s ′ : s ′ ∈ Sat(Φ)}

Sat(∃X Φ)
def
= {s ∈ S | ∃ s ′ s.t. s → s ′ and s ′ ∈ Sat(Φ)}

Sat(∀Φ1 U Φ2)
def
= Sat(Φ2) ∪ {s ∈ Sat(Φ1) | ∀ s ′ s.t. s → s ′ :

s ′ ∈ Sat(∀Φ1 U Φ2)}
Sat(∃Φ1 U Φ2)

def
= Sat(Φ2) ∪ {s ∈ Sat(Φ1) | ∃ s ′ s.t. s → s ′ and

s ′ ∈ Sat(∃Φ1 U Φ2)}

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 102 / 113

MC Algorithm Specification

Given: K = (S ,As , L,→) and Φ, returns: Sat(Φ)
def
= {s ∈ S | s |= Φ}.

Sat(tt)
def
= S

Sat(a)
def
= {s ∈ S | a ∈ L(s)}

Sat(¬Φ)
def
= S \ Sat(Φ)

Sat(Φ1 ∧ Φ2)
def
= Sat(Φ1) ∩ Sat(Φ2)

Sat(Φ1 ∨ Φ2)
def
= Sat(Φ1) ∪ Sat(Φ2)

Sat(∀X Φ)
def
= {s ∈ S | ∀ s ′ s.t. s → s ′ : s ′ ∈ Sat(Φ)}

Sat(∃X Φ)
def
= {s ∈ S | ∃ s ′ s.t. s → s ′ and s ′ ∈ Sat(Φ)}

Sat(∀Φ1 U Φ2)
def
= Sat(Φ2) ∪ {s ∈ Sat(Φ1) | ∀ s ′ s.t. s → s ′ :

s ′ ∈ Sat(∀Φ1 U Φ2)}
Sat(∃Φ1 U Φ2)

def
= Sat(Φ2) ∪ {s ∈ Sat(Φ1) | ∃ s ′ s.t. s → s ′ and

s ′ ∈ Sat(∃Φ1 U Φ2)}

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 102 / 113

MC Algorithm Specification

Given: K = (S ,As , L,→) and Φ, returns: Sat(Φ)
def
= {s ∈ S | s |= Φ}.

Sat(tt)
def
= S

Sat(a)
def
= {s ∈ S | a ∈ L(s)}

Sat(¬Φ)
def
= S \ Sat(Φ)

Sat(Φ1 ∧ Φ2)
def
= Sat(Φ1) ∩ Sat(Φ2)

Sat(Φ1 ∨ Φ2)
def
= Sat(Φ1) ∪ Sat(Φ2)

Sat(∀X Φ)
def
= {s ∈ S | ∀ s ′ s.t. s → s ′ : s ′ ∈ Sat(Φ)}

Sat(∃X Φ)
def
= {s ∈ S | ∃ s ′ s.t. s → s ′ and s ′ ∈ Sat(Φ)}

Sat(∀Φ1 U Φ2)
def
= Sat(Φ2) ∪ {s ∈ Sat(Φ1) | ∀ s ′ s.t. s → s ′ :

s ′ ∈ Sat(∀Φ1 U Φ2)}
Sat(∃Φ1 U Φ2)

def
= Sat(Φ2) ∪ {s ∈ Sat(Φ1) | ∃ s ′ s.t. s → s ′ and

s ′ ∈ Sat(∃Φ1 U Φ2)}

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 102 / 113

MC Algorithm Specification

Given: K = (S ,As , L,→) and Φ, returns: Sat(Φ)
def
= {s ∈ S | s |= Φ}.

Sat(tt)
def
= S

Sat(a)
def
= {s ∈ S | a ∈ L(s)}

Sat(¬Φ)
def
= S \ Sat(Φ)

Sat(Φ1 ∧ Φ2)
def
= Sat(Φ1) ∩ Sat(Φ2)

Sat(Φ1 ∨ Φ2)
def
= Sat(Φ1) ∪ Sat(Φ2)

Sat(∀X Φ)
def
= {s ∈ S | ∀ s ′ s.t. s → s ′ : s ′ ∈ Sat(Φ)}

Sat(∃X Φ)
def
= {s ∈ S | ∃ s ′ s.t. s → s ′ and s ′ ∈ Sat(Φ)}

Sat(∀Φ1 U Φ2)
def
= Sat(Φ2) ∪ {s ∈ Sat(Φ1) | ∀ s ′ s.t. s → s ′ :

s ′ ∈ Sat(∀Φ1 U Φ2)}
Sat(∃Φ1 U Φ2)

def
= Sat(Φ2) ∪ {s ∈ Sat(Φ1) | ∃ s ′ s.t. s → s ′ and

s ′ ∈ Sat(∃Φ1 U Φ2)}

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 102 / 113

MC Algorithm Specification

Given: K = (S ,As , L,→) and Φ, returns: Sat(Φ)
def
= {s ∈ S | s |= Φ}.

Sat(tt)
def
= S

Sat(a)
def
= {s ∈ S | a ∈ L(s)}

Sat(¬Φ)
def
= S \ Sat(Φ)

Sat(Φ1 ∧ Φ2)
def
= Sat(Φ1) ∩ Sat(Φ2)

Sat(Φ1 ∨ Φ2)
def
= Sat(Φ1) ∪ Sat(Φ2)

Sat(∀X Φ)
def
= {s ∈ S | ∀ s ′ s.t. s → s ′ : s ′ ∈ Sat(Φ)}

Sat(∃X Φ)
def
= {s ∈ S | ∃ s ′ s.t. s → s ′ and s ′ ∈ Sat(Φ)}

Sat(∀Φ1 U Φ2)
def
= Sat(Φ2) ∪ {s ∈ Sat(Φ1) | ∀ s ′ s.t. s → s ′ :

s ′ ∈ Sat(∀Φ1 U Φ2)}
Sat(∃Φ1 U Φ2)

def
= Sat(Φ2) ∪ {s ∈ Sat(Φ1) | ∃ s ′ s.t. s → s ′ and

s ′ ∈ Sat(∃Φ1 U Φ2)}

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 102 / 113

MC Algorithm Specification

Given: K = (S ,As , L,→) and Φ, returns: Sat(Φ)
def
= {s ∈ S | s |= Φ}.

Sat(tt)
def
= S

Sat(a)
def
= {s ∈ S | a ∈ L(s)}

Sat(¬Φ)
def
= S \ Sat(Φ)

Sat(Φ1 ∧ Φ2)
def
= Sat(Φ1) ∩ Sat(Φ2)

Sat(Φ1 ∨ Φ2)
def
= Sat(Φ1) ∪ Sat(Φ2)

Sat(∀X Φ)
def
= {s ∈ S | ∀ s ′ s.t. s → s ′ : s ′ ∈ Sat(Φ)}

Sat(∃X Φ)
def
= {s ∈ S | ∃ s ′ s.t. s → s ′ and s ′ ∈ Sat(Φ)}

Sat(∀Φ1 U Φ2)
def
= Sat(Φ2) ∪ {s ∈ Sat(Φ1) | ∀ s ′ s.t. s → s ′ :

s ′ ∈ Sat(∀Φ1 U Φ2)}
Sat(∃Φ1 U Φ2)

def
= Sat(Φ2) ∪ {s ∈ Sat(Φ1) | ∃ s ′ s.t. s → s ′ and

s ′ ∈ Sat(∃Φ1 U Φ2)}
c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 102 / 113

Success stories

Classical FM have been successfully used for modeling and analyzing
functional aspects of complex systems, for example:

Model-checking models of trillions of states (or more ... 1010000)

Complex control software for space applications
(e.g. NASA Mars rovers [COMPUTER, Jan. 04])

Complex control software for civil applications
(e.g. Rotterdam Storm Surge Barrier, The Netherlands)

Automotive & Railways
(e.g. train interlocking & on board control systems)

Low level device control (Intel, Siemens, Microsoft)

. . .

(Automatic) Theorem Proving, e.g.

Avionics systems (e.g. Boeing)
...

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 103 / 113

Success stories

Classical FM have been successfully used for modeling and analyzing
functional aspects of complex systems, for example:

Model-checking models of trillions of states (or more ... 1030)

Complex control software for space applications
(e.g. NASA Mars rovers [COMPUTER, Jan. 04])

Complex control software for civil applications
(e.g. Rotterdam Storm Surge Barrier, The Netherlands)

Automotive & Railways
(e.g. train interlocking & on board control systems)

Low level device control (Intel, Siemens, Microsoft)

. . .

(Automatic) Theorem Proving, e.g.

Avionics systems (e.g. Boeing)
...

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 103 / 113

Success stories

Classical FM have been successfully used for modeling and analyzing
functional aspects of complex systems, for example:

Model-checking models of trillions of states (or more ... 10100)

Complex control software for space applications
(e.g. NASA Mars rovers [COMPUTER, Jan. 04])

Complex control software for civil applications
(e.g. Rotterdam Storm Surge Barrier, The Netherlands)

Automotive & Railways
(e.g. train interlocking & on board control systems)

Low level device control (Intel, Siemens, Microsoft)

. . .

(Automatic) Theorem Proving, e.g.

Avionics systems (e.g. Boeing)
...

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 103 / 113

Success stories

Classical FM have been successfully used for modeling and analyzing
functional aspects of complex systems, for example:

Model-checking models of trillions of states (or more ... 1010000)

Complex control software for space applications
(e.g. NASA Mars rovers [COMPUTER, Jan. 04])

Complex control software for civil applications
(e.g. Rotterdam Storm Surge Barrier, The Netherlands)

Automotive & Railways
(e.g. train interlocking & on board control systems)

Low level device control (Intel, Siemens, Microsoft)

. . .

(Automatic) Theorem Proving, e.g.

Avionics systems (e.g. Boeing)
...

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 103 / 113

Success stories

Classical FM have been successfully used for modeling and analyzing
functional aspects of complex systems, for example:

Model-checking models of trillions of states (or more ... 1010000)

Complex control software for space applications
(e.g. NASA Mars rovers [COMPUTER, Jan. 04])

Complex control software for civil applications
(e.g. Rotterdam Storm Surge Barrier, The Netherlands)

Automotive & Railways
(e.g. train interlocking & on board control systems)

Low level device control (Intel, Siemens, Microsoft)

. . .

(Automatic) Theorem Proving, e.g.

Avionics systems (e.g. Boeing)
...

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 103 / 113

Success stories

Classical FM have been successfully used for modeling and analyzing
functional aspects of complex systems, for example:

Model-checking models of trillions of states (or more ... 1010000)

Complex control software for space applications
(e.g. NASA Mars rovers [COMPUTER, Jan. 04])

Complex control software for civil applications
(e.g. Rotterdam Storm Surge Barrier, The Netherlands)

Automotive & Railways
(e.g. train interlocking & on board control systems)

Low level device control (Intel, Siemens, Microsoft)

. . .

(Automatic) Theorem Proving, e.g.

Avionics systems (e.g. Boeing)
...

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 103 / 113

Success stories

Classical FM have been successfully used for modeling and analyzing
functional aspects of complex systems, for example:

Model-checking models of trillions of states (or more ... 1010000)

Complex control software for space applications
(e.g. NASA Mars rovers [COMPUTER, Jan. 04])

Complex control software for civil applications
(e.g. Rotterdam Storm Surge Barrier, The Netherlands)

Automotive & Railways
(e.g. train interlocking & on board control systems)

Low level device control (Intel, Siemens, Microsoft)

. . .

(Automatic) Theorem Proving, e.g.

Avionics systems (e.g. Boeing)
...

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 103 / 113

Success stories

Classical FM have been successfully used for modeling and analyzing
functional aspects of complex systems, for example:

Model-checking models of trillions of states (or more ... 1010000)

Complex control software for space applications
(e.g. NASA Mars rovers [COMPUTER, Jan. 04])

Complex control software for civil applications
(e.g. Rotterdam Storm Surge Barrier, The Netherlands)

Automotive & Railways
(e.g. train interlocking & on board control systems)

Low level device control (Intel, Siemens, Microsoft)

. . .

(Automatic) Theorem Proving, e.g.

Avionics systems (e.g. Boeing)
...

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 103 / 113

Success stories

Classical FM have been successfully used for modeling and analyzing
functional aspects of complex systems, for example:

Model-checking models of trillions of states (or more ... 1010000)

Complex control software for space applications
(e.g. NASA Mars rovers [COMPUTER, Jan. 04])

Complex control software for civil applications
(e.g. Rotterdam Storm Surge Barrier, The Netherlands)

Automotive & Railways
(e.g. train interlocking & on board control systems)

Low level device control (Intel, Siemens, Microsoft)

. . .

(Automatic) Theorem Proving, e.g.

Avionics systems (e.g. Boeing)
...

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 103 / 113

Success stories

Classical FM have been successfully used for modeling and analyzing
functional aspects of complex systems, for example:

Model-checking models of trillions of states (or more ... 1010000)

Complex control software for space applications
(e.g. NASA Mars rovers [COMPUTER, Jan. 04])

Complex control software for civil applications
(e.g. Rotterdam Storm Surge Barrier, The Netherlands)

Automotive & Railways
(e.g. train interlocking & on board control systems)

Low level device control (Intel, Siemens, Microsoft)

. . .

(Automatic) Theorem Proving, e.g.

Avionics systems (e.g. Boeing)
...

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 103 / 113

Success stories

Classical FM have been successfully used for modeling and analyzing
functional aspects of complex systems, for example:

Model-checking models of trillions of states (or more ... 1010000)

Complex control software for space applications
(e.g. NASA Mars rovers [COMPUTER, Jan. 04])

Complex control software for civil applications
(e.g. Rotterdam Storm Surge Barrier, The Netherlands)

Automotive & Railways
(e.g. train interlocking & on board control systems)

Low level device control (Intel, Siemens, Microsoft)

. . .

(Automatic) Theorem Proving, e.g.

Avionics systems (e.g. Boeing)

...

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 103 / 113

Success stories

Classical FM have been successfully used for modeling and analyzing
functional aspects of complex systems, for example:

Model-checking models of trillions of states (or more ... 1010000)

Complex control software for space applications
(e.g. NASA Mars rovers [COMPUTER, Jan. 04])

Complex control software for civil applications
(e.g. Rotterdam Storm Surge Barrier, The Netherlands)

Automotive & Railways
(e.g. train interlocking & on board control systems)

Low level device control (Intel, Siemens, Microsoft)

. . .

(Automatic) Theorem Proving, e.g.

Avionics systems (e.g. Boeing)
...

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 103 / 113

Success stories

Classical FM have been successfully used for modeling and analyzing
functional aspects of complex systems, for example:

Model-checking models of trillions of states (or more ... 1010000)

Complex control software for space applications
(e.g. NASA Mars rovers [COMPUTER, Jan. 04])

Complex control software for civil applications
(e.g. Rotterdam Storm Surge Barrier, The Netherlands)

Automotive & Railways
(e.g. train interlocking & on board control systems)

Low level device control (Intel, Siemens, Microsoft)

. . .

(Automatic) Theorem Proving, e.g.

Avionics systems (e.g. Boeing)
...

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 103 / 113

Success stories

Things like even software verification, this has been the Holy Grail of
computer science for many decades but now in some very key areas,
for example, driver verification we’re building tools that can do actual
proof about the software and how it works in order to guarantee the
reliability.

Bill Gates, April 18, 2002.
Keynote address at WinHEC 2002

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 104 / 113

Success stories

Things like even software verification, this has been the Holy Grail of
computer science for many decades but now in some very key areas,
for example, driver verification we’re building tools that can do actual
proof about the software and how it works in order to guarantee the
reliability.

Bill Gates, April 18, 2002.
Keynote address at WinHEC 2002

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 104 / 113

Timed/Probabilistic/Stochastic
Extensions of

Process Algebraic System Modelling
and

Temporal Logic Requirement Specification

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 105 / 113

Extensions of FM

A substantial contribution to the design of dependable systems can be
provided by extensions of FM for the integrated modeling and analysis of
functional and non-functional aspects of complex systems, e.g.

High level model specification languages

e.g.

Timed-/Probabilistic-/Stochastic-Process Calculi

High level (non-)functional requirement specification languages,

e.g.

Timed-/Probabilistic-/Stochastic-Temporal Logics

Efficient verification techniques,

e.g.

Timed-/Probabilistic-/Stochastic-Model-checkers

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 106 / 113

Extensions of FM

A substantial contribution to the design of dependable systems can be
provided by extensions of FM for the integrated modeling and analysis of
functional and non-functional aspects of complex systems, e.g.

High level model specification languages

e.g.

Timed-/Probabilistic-/Stochastic-Process Calculi

High level (non-)functional requirement specification languages,

e.g.

Timed-/Probabilistic-/Stochastic-Temporal Logics

Efficient verification techniques,

e.g.

Timed-/Probabilistic-/Stochastic-Model-checkers

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 106 / 113

Extensions of FM

A substantial contribution to the design of dependable systems can be
provided by extensions of FM for the integrated modeling and analysis of
functional and non-functional aspects of complex systems, e.g.

High level model specification languages e.g.

Timed-/Probabilistic-/Stochastic-Process Calculi

High level (non-)functional requirement specification languages,

e.g.

Timed-/Probabilistic-/Stochastic-Temporal Logics

Efficient verification techniques,

e.g.

Timed-/Probabilistic-/Stochastic-Model-checkers

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 106 / 113

Extensions of FM

A substantial contribution to the design of dependable systems can be
provided by extensions of FM for the integrated modeling and analysis of
functional and non-functional aspects of complex systems, e.g.

High level model specification languages e.g.

Timed-/Probabilistic-/Stochastic-Process Calculi

High level (non-)functional requirement specification languages,

e.g.

Timed-/Probabilistic-/Stochastic-Temporal Logics

Efficient verification techniques,

e.g.

Timed-/Probabilistic-/Stochastic-Model-checkers

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 106 / 113

Extensions of FM

A substantial contribution to the design of dependable systems can be
provided by extensions of FM for the integrated modeling and analysis of
functional and non-functional aspects of complex systems, e.g.

High level model specification languages e.g.

Timed-/Probabilistic-/Stochastic-Process Calculi

High level (non-)functional requirement specification languages, e.g.

Timed-/Probabilistic-/Stochastic-Temporal Logics

Efficient verification techniques,

e.g.

Timed-/Probabilistic-/Stochastic-Model-checkers

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 106 / 113

Extensions of FM

A substantial contribution to the design of dependable systems can be
provided by extensions of FM for the integrated modeling and analysis of
functional and non-functional aspects of complex systems, e.g.

High level model specification languages e.g.

Timed-/Probabilistic-/Stochastic-Process Calculi

High level (non-)functional requirement specification languages, e.g.

Timed-/Probabilistic-/Stochastic-Temporal Logics

Efficient verification techniques,

e.g.

Timed-/Probabilistic-/Stochastic-Model-checkers

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 106 / 113

Extensions of FM

A substantial contribution to the design of dependable systems can be
provided by extensions of FM for the integrated modeling and analysis of
functional and non-functional aspects of complex systems, e.g.

High level model specification languages e.g.

Timed-/Probabilistic-/Stochastic-Process Calculi

High level (non-)functional requirement specification languages, e.g.

Timed-/Probabilistic-/Stochastic-Temporal Logics

Efficient verification techniques, e.g.

Timed-/Probabilistic-/Stochastic-Model-checkers

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 106 / 113

Extensions of FM

A substantial contribution to the design of dependable systems can be
provided by extensions of FM for the integrated modeling and analysis of
functional and non-functional aspects of complex systems, e.g.

High level model specification languages e.g.

Timed-/Probabilistic-/ Stochastic- Process Calculi

High level (non-)functional requirement specification languages, e.g.

Timed-/Probabilistic-/ Stochastic- Temporal Logics

Efficient verification techniques, e.g.

Timed-/Probabilistic-/ Stochastic- Model-checkers

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 106 / 113

From algebraic terms to LTS via Formal Semantics.

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Logic deduction system)

Mathematical Objects
(LTS)

s0

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 107 / 113

From algebraic terms to LTS via Formal Semantics.

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Logic deduction system)

Mathematical Objects
(CTMC)

λ4 s1

s2

s3

s4

s5

s0

λ8

λ6
λ2

λ5
λ7

λ10

λ9

λ3

λ1

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 108 / 113

From algebraic terms to CTMC via Formal Semantics.

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Logic deduction system)

Mathematical Objects
(CTMC)

λ4 s1

s2

s3

s4

s5

s0

λ8

λ6
λ2

λ5
λ7

λ10

λ9

λ3

λ1

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 108 / 113

From algebraic terms to CTMC via Formal Semantics.

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Logic deduction system)

Mathematical Objects
(CTMC)

λ4 s1

s2

s3

s4

s5

s0

λ8

λ6
λ2

λ5
λ7

λ10

λ9

λ3

λ1

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 108 / 113

From algebraic terms to CTMC via Formal Semantics.

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Logic deduction system)

Mathematical Objects
(CTMC)

λ1

s1

s2

s3

s4

s5

b

a

a

d

a

c

ab
d

a

s0

λ8

λ6
λ2

λ5
λ7

λ10

λ9

λ3

λ4

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 108 / 113

From algebraic terms to CTMC via Formal Semantics.

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Logic deduction system)

Mathematical Objects
(CTMC)

λ4 s1

s2

s3

s4

s5

s0

λ8

λ6
λ2

λ5
λ7

λ10

λ9

λ3

λ1

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 108 / 113

From algebraic terms to CTMC via Formal Semantics.

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Logic deduction system)

Mathematical Objects
(CTMC)

λ4 s1

s2

s3

s4

s5

s0

λ8

λ6
λ2

λ5
λ7

λ10

λ9

λ3

λ1

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 108 / 113

From algebraic terms to CTMC via Formal Semantics.

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Logic deduction system)

Mathematical Objects
(CTMC)

λ4 s1

s2

s3

s4

s5

s0

λ8

λ6
λ2

λ5
λ7

λ10

λ9

λ3

λ1

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 108 / 113

A process algebraic approach to stochastic system
modelling

1 Algebraic terms

, defined via a Formal syntax, e.g. Hillston PEPA-like:

S ::= nil | (α, λ).S | S + S | (α, λ).X | S |[α1, . . . , αn]|S
with α, α1. . . . αn ∈ At , λ > 0,

and constants defined via equations X
∆
= S

with graphical tool support;

2 CTMC

, the reference Mathematical Objects

, equipped with
Behavioural Relations, i.e. Formal Equivalences, e.g. Lumping

3 A mapping of terms to CTMC

, the Formal Semantics definition, e.g.:

(α, λ).S
(α,λ)−→S

S1
(α,λ)−→S

S1 + S2
(α,λ)−→S

. . .

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

plus standard CTMC analysis techniques

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 109 / 113

A process algebraic approach to stochastic system
modelling

1 Algebraic terms

, defined via a Formal syntax, e.g. Hillston PEPA-like:

S ::= nil | (α, λ).S | S + S | (α, λ).X | S |[α1, . . . , αn]|S
with α, α1. . . . αn ∈ At , λ > 0,

and constants defined via equations X
∆
= S

with graphical tool support;

2 CTMC

, the reference Mathematical Objects

, equipped with
Behavioural Relations, i.e. Formal Equivalences, e.g. Lumping

3 A mapping of terms to CTMC

, the Formal Semantics definition, e.g.:

(α, λ).S
(α,λ)−→S

S1
(α,λ)−→S

S1 + S2
(α,λ)−→S

. . .

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

plus standard CTMC analysis techniques

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 109 / 113

A process algebraic approach to stochastic system
modelling

1 Algebraic terms, defined via a Formal syntax, e.g. Hillston PEPA-like:

S ::= nil | (α, λ).S | S + S | (α, λ).X | S |[α1, . . . , αn]|S
with α, α1. . . . αn ∈ At , λ > 0,

and constants defined via equations X
∆
= S

with graphical tool support;

2 CTMC

, the reference Mathematical Objects

, equipped with
Behavioural Relations, i.e. Formal Equivalences, e.g. Lumping

3 A mapping of terms to CTMC

, the Formal Semantics definition, e.g.:

(α, λ).S
(α,λ)−→S

S1
(α,λ)−→S

S1 + S2
(α,λ)−→S

. . .

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

plus standard CTMC analysis techniques

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 109 / 113

A process algebraic approach to stochastic system
modelling

1 Algebraic terms, defined via a Formal syntax, e.g. Hillston PEPA-like:

S ::= nil | (α, λ).S | S + S | (α, λ).X | S |[α1, . . . , αn]|S
with α, α1. . . . αn ∈ At , λ > 0,

and constants defined via equations X
∆
= S

with graphical tool support;

2 CTMC

, the reference Mathematical Objects

, equipped with
Behavioural Relations, i.e. Formal Equivalences, e.g. Lumping

3 A mapping of terms to CTMC

, the Formal Semantics definition, e.g.:

(α, λ).S
(α,λ)−→S

S1
(α,λ)−→S

S1 + S2
(α,λ)−→S

. . .

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

plus standard CTMC analysis techniques

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 109 / 113

A process algebraic approach to stochastic system
modelling

1 Algebraic terms, defined via a Formal syntax, e.g. Hillston PEPA-like:

S ::= nil | (α, λ).S | S + S | (α, λ).X | S |[α1, . . . , αn]|S
with α, α1. . . . αn ∈ At , λ > 0,

and constants defined via equations X
∆
= S

with graphical tool support;

2 CTMC

, the reference Mathematical Objects

, equipped with
Behavioural Relations, i.e. Formal Equivalences, e.g. Lumping

3 A mapping of terms to CTMC

, the Formal Semantics definition, e.g.:

(α, λ).S
(α,λ)−→S

S1
(α,λ)−→S

S1 + S2
(α,λ)−→S

. . .

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

plus standard CTMC analysis techniques

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 109 / 113

A process algebraic approach to stochastic system
modelling

1 Algebraic terms, defined via a Formal syntax, e.g. Hillston PEPA-like:

S ::= nil | (α, λ).S | S + S | (α, λ).X | S |[α1, . . . , αn]|S
with α, α1. . . . αn ∈ At , λ > 0,

and constants defined via equations X
∆
= S

with graphical tool support;

2 CTMC, the reference Mathematical Objects

, equipped with
Behavioural Relations, i.e. Formal Equivalences, e.g. Lumping

3 A mapping of terms to CTMC

, the Formal Semantics definition, e.g.:

(α, λ).S
(α,λ)−→S

S1
(α,λ)−→S

S1 + S2
(α,λ)−→S

. . .

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

plus standard CTMC analysis techniques

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 109 / 113

A process algebraic approach to stochastic system
modelling

1 Algebraic terms, defined via a Formal syntax, e.g. Hillston PEPA-like:

S ::= nil | (α, λ).S | S + S | (α, λ).X | S |[α1, . . . , αn]|S
with α, α1. . . . αn ∈ At , λ > 0,

and constants defined via equations X
∆
= S

with graphical tool support;

2 CTMC, the reference Mathematical Objects, equipped with
Behavioural Relations

, i.e. Formal Equivalences, e.g. Lumping

3 A mapping of terms to CTMC

, the Formal Semantics definition, e.g.:

(α, λ).S
(α,λ)−→S

S1
(α,λ)−→S

S1 + S2
(α,λ)−→S

. . .

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

plus standard CTMC analysis techniques

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 109 / 113

A process algebraic approach to stochastic system
modelling

1 Algebraic terms, defined via a Formal syntax, e.g. Hillston PEPA-like:

S ::= nil | (α, λ).S | S + S | (α, λ).X | S |[α1, . . . , αn]|S
with α, α1. . . . αn ∈ At , λ > 0,

and constants defined via equations X
∆
= S

with graphical tool support;

2 CTMC, the reference Mathematical Objects, equipped with
Behavioural Relations, i.e. Formal Equivalences, e.g. Lumping

3 A mapping of terms to CTMC

, the Formal Semantics definition, e.g.:

(α, λ).S
(α,λ)−→S

S1
(α,λ)−→S

S1 + S2
(α,λ)−→S

. . .

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

plus standard CTMC analysis techniques

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 109 / 113

A process algebraic approach to stochastic system
modelling

1 Algebraic terms, defined via a Formal syntax, e.g. Hillston PEPA-like:

S ::= nil | (α, λ).S | S + S | (α, λ).X | S |[α1, . . . , αn]|S
with α, α1. . . . αn ∈ At , λ > 0,

and constants defined via equations X
∆
= S

with graphical tool support;

2 CTMC, the reference Mathematical Objects, equipped with
Behavioural Relations, i.e. Formal Equivalences, e.g. Lumping

3 A mapping of terms to CTMC

, the Formal Semantics definition, e.g.:

(α, λ).S
(α,λ)−→S

S1
(α,λ)−→S

S1 + S2
(α,λ)−→S

. . .

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

plus standard CTMC analysis techniques

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 109 / 113

A process algebraic approach to stochastic system
modelling

1 Algebraic terms, defined via a Formal syntax, e.g. Hillston PEPA-like:

S ::= nil | (α, λ).S | S + S | (α, λ).X | S |[α1, . . . , αn]|S
with α, α1. . . . αn ∈ At , λ > 0,

and constants defined via equations X
∆
= S

with graphical tool support;

2 CTMC, the reference Mathematical Objects, equipped with
Behavioural Relations, i.e. Formal Equivalences, e.g. Lumping

3 A mapping of terms to CTMC, the Formal Semantics definition

(α, λ).S
(α,λ)−→S

S1
(α,λ)−→S

S1 + S2
(α,λ)−→S

. . .

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

plus standard CTMC analysis techniques

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 109 / 113

A process algebraic approach to stochastic system
modelling

1 Algebraic terms, defined via a Formal syntax, e.g. Hillston PEPA-like:

S ::= nil | (α, λ).S | S + S | (α, λ).X | S |[α1, . . . , αn]|S
with α, α1. . . . αn ∈ At , λ > 0,

and constants defined via equations X
∆
= S

with graphical tool support;

2 CTMC, the reference Mathematical Objects, equipped with
Behavioural Relations, i.e. Formal Equivalences, e.g. Lumping

3 A mapping of terms to CTMC, the Formal Semantics definition, e.g.:

(α, λ).S
(α,λ)−→S

S1
(α,λ)−→S

S1 + S2
(α,λ)−→S

. . .

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

plus standard CTMC analysis techniques

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 109 / 113

A process algebraic approach to stochastic system
modelling

1 Algebraic terms, defined via a Formal syntax, e.g. Hillston PEPA-like:

S ::= nil | (α, λ).S | S + S | (α, λ).X | S |[α1, . . . , αn]|S
with α, α1. . . . αn ∈ At , λ > 0,

and constants defined via equations X
∆
= S

with graphical tool support;

2 CTMC, the reference Mathematical Objects, equipped with
Behavioural Relations, i.e. Formal Equivalences, e.g. Lumping

3 A mapping of terms to CTMC, the Formal Semantics definition, e.g.:

(α, λ).S
(α,λ)−→S

S1
(α,λ)−→S

S1 + S2
(α,λ)−→S

. . .

4 Algebraic terms manipulation rules

, i.e. Axiomatizations of
Equivalences

plus standard CTMC analysis techniques

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 109 / 113

A process algebraic approach to stochastic system
modelling

1 Algebraic terms, defined via a Formal syntax, e.g. Hillston PEPA-like:

S ::= nil | (α, λ).S | S + S | (α, λ).X | S |[α1, . . . , αn]|S
with α, α1. . . . αn ∈ At , λ > 0,

and constants defined via equations X
∆
= S

with graphical tool support;

2 CTMC, the reference Mathematical Objects, equipped with
Behavioural Relations, i.e. Formal Equivalences, e.g. Lumping

3 A mapping of terms to CTMC, the Formal Semantics definition, e.g.:

(α, λ).S
(α,λ)−→S

S1
(α,λ)−→S

S1 + S2
(α,λ)−→S

. . .

4 Algebraic terms manipulation rules, i.e. Axiomatizations of
Equivalences

plus standard CTMC analysis techniques

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 109 / 113

A process algebraic approach to stochastic system
modelling

1 Algebraic terms, defined via a Formal syntax, e.g. Hillston PEPA-like:

S ::= nil | (α, λ).S | S + S | (α, λ).X | S |[α1, . . . , αn]|S
with α, α1. . . . αn ∈ At , λ > 0,

and constants defined via equations X
∆
= S

with graphical tool support;

2 CTMC, the reference Mathematical Objects, equipped with
Behavioural Relations, i.e. Formal Equivalences, e.g. Lumping

3 A mapping of terms to CTMC, the Formal Semantics definition, e.g.:

(α, λ).S
(α,λ)−→S

S1
(α,λ)−→S

S1 + S2
(α,λ)−→S

. . .

4 Algebraic terms manipulation rules, i.e. Axiomatizations of
Equivalences plus standard CTMC analysis techniques

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 109 / 113

From logic formulae to CTMC via Formal Semantics.

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Logic deduction system)

Mathematical Objects
(CTMC, Cones, Cilynders)

λ4 s1

s2

s3

s4

s5

s0

λ8

λ6
λ2

λ5
λ7

λ10

λ9

λ3

λ1

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 110 / 113

From logic formulae to CTMC via Formal Semantics.

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Logic deduction system)

Mathematical Objects
(CTMC, Cones, Cilynders)

λ4 s1

s2

s3

s4

s5

s0

λ8

λ6
λ2

λ5
λ7

λ10

λ9

λ3

λ1

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 110 / 113

From logic formulae to CTMC via Formal Semantics.

Formal Syntax definition
(Grammar)

Formal Semantics definition
(Logic deduction system)

Mathematical Objects
(CTMC, Cones, Cilynders)

λ4 s1

s2

s3

s4

s5

s0

λ8

λ6
λ2

λ5
λ7

λ10

λ9

λ3

λ1

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 110 / 113

A stochastic logics approach to
non-functional Requirement specification

1 Logic formulae

, defined via a Formal syntax, e.g. Baier et al.
CSL-like:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | S./p(Φ) | P./p(ϕ)

ϕ ::= Xt Φ | Φ U t Φ

2 CTMC

, the reference Mathematical Objects

, equipped with proper
theory

3 A relation between formulae and CTMC

, the Formal Semantics
definition

s |= S≥p(Φ) iff the probability to be in a state s ′ s.t. s ′ |= Φ, in the
long run starting from s, is ≥ p.

4 Automatic verification

, i.e. Stochastic Model Checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 111 / 113

A stochastic logics approach to
non-functional Requirement specification

1 Logic formulae

, defined via a Formal syntax, e.g. Baier et al.
CSL-like:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | S./p(Φ) | P./p(ϕ)

ϕ ::= Xt Φ | Φ U t Φ

2 CTMC

, the reference Mathematical Objects

, equipped with proper
theory

3 A relation between formulae and CTMC

, the Formal Semantics
definition

s |= S≥p(Φ) iff the probability to be in a state s ′ s.t. s ′ |= Φ, in the
long run starting from s, is ≥ p.

4 Automatic verification

, i.e. Stochastic Model Checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 111 / 113

A stochastic logics approach to
non-functional Requirement specification

1 Logic formulae, defined via a Formal syntax, e.g. Baier et al.
CSL-like:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | S./p(Φ) | P./p(ϕ)

ϕ ::= Xt Φ | Φ U t Φ

2 CTMC

, the reference Mathematical Objects

, equipped with proper
theory

3 A relation between formulae and CTMC

, the Formal Semantics
definition

s |= S≥p(Φ) iff the probability to be in a state s ′ s.t. s ′ |= Φ, in the
long run starting from s, is ≥ p.

4 Automatic verification

, i.e. Stochastic Model Checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 111 / 113

A stochastic logics approach to
non-functional Requirement specification

1 Logic formulae, defined via a Formal syntax, e.g. Baier et al.
CSL-like:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | S./p(Φ) | P./p(ϕ)

ϕ ::= Xt Φ | Φ U t Φ

2 CTMC

, the reference Mathematical Objects

, equipped with proper
theory

3 A relation between formulae and CTMC

, the Formal Semantics
definition

s |= S≥p(Φ) iff the probability to be in a state s ′ s.t. s ′ |= Φ, in the
long run starting from s, is ≥ p.

4 Automatic verification

, i.e. Stochastic Model Checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 111 / 113

A stochastic logics approach to
non-functional Requirement specification

1 Logic formulae, defined via a Formal syntax, e.g. Baier et al.
CSL-like:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | S./p(Φ) | P./p(ϕ)

ϕ ::= Xt Φ | Φ U t Φ

2 CTMC, the reference Mathematical Objects

, equipped with proper
theory

3 A relation between formulae and CTMC

, the Formal Semantics
definition

s |= S≥p(Φ) iff the probability to be in a state s ′ s.t. s ′ |= Φ, in the
long run starting from s, is ≥ p.

4 Automatic verification

, i.e. Stochastic Model Checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 111 / 113

A stochastic logics approach to
non-functional Requirement specification

1 Logic formulae, defined via a Formal syntax, e.g. Baier et al.
CSL-like:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | S./p(Φ) | P./p(ϕ)

ϕ ::= Xt Φ | Φ U t Φ

2 CTMC, the reference Mathematical Objects, equipped with proper
theory

3 A relation between formulae and CTMC

, the Formal Semantics
definition

s |= S≥p(Φ) iff the probability to be in a state s ′ s.t. s ′ |= Φ, in the
long run starting from s, is ≥ p.

4 Automatic verification

, i.e. Stochastic Model Checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 111 / 113

A stochastic logics approach to
non-functional Requirement specification

1 Logic formulae, defined via a Formal syntax, e.g. Baier et al.
CSL-like:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | S./p(Φ) | P./p(ϕ)

ϕ ::= Xt Φ | Φ U t Φ

2 CTMC, the reference Mathematical Objects, equipped with proper
theory

3 A relation between formulae and CTMC

, the Formal Semantics
definition

s |= S≥p(Φ) iff the probability to be in a state s ′ s.t. s ′ |= Φ, in the
long run starting from s, is ≥ p.

4 Automatic verification

, i.e. Stochastic Model Checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 111 / 113

A stochastic logics approach to
non-functional Requirement specification

1 Logic formulae, defined via a Formal syntax, e.g. Baier et al.
CSL-like:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | S./p(Φ) | P./p(ϕ)

ϕ ::= Xt Φ | Φ U t Φ

2 CTMC, the reference Mathematical Objects, equipped with proper
theory

3 A relation between formulae and CTMC, the Formal Semantics
definition

s |= S≥p(Φ) iff the probability to be in a state s ′ s.t. s ′ |= Φ, in the
long run starting from s, is ≥ p.

4 Automatic verification

, i.e. Stochastic Model Checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 111 / 113

A stochastic logics approach to
non-functional Requirement specification

1 Logic formulae, defined via a Formal syntax, e.g. Baier et al.
CSL-like:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | S./p(Φ) | P./p(ϕ)

ϕ ::= Xt Φ | Φ U t Φ

2 CTMC, the reference Mathematical Objects, equipped with proper
theory

3 A relation between formulae and CTMC, the Formal Semantics
definition

γ |= Xt Φ iff γ[1] is reached by time t and γ[1] |= Φ.

4 Automatic verification

, i.e. Stochastic Model Checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 111 / 113

A stochastic logics approach to
non-functional Requirement specification

1 Logic formulae, defined via a Formal syntax, e.g. Baier et al.
CSL-like:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | S./p(Φ) | P./p(ϕ)

ϕ ::= Xt Φ | Φ U t Φ

2 CTMC, the reference Mathematical Objects, equipped with proper
theory

3 A relation between formulae and CTMC, the Formal Semantics
definition

γ |= Φ1 U t Φ2 iff there exists j ≥ 0 s.t. γ[j] is is reached by time t,
γ[j] |= Φ2, and γ[i] |= Φ2, for all 0 ≤ i < j

4 Automatic verification

, i.e. Stochastic Model Checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 111 / 113

A stochastic logics approach to
non-functional Requirement specification

1 Logic formulae, defined via a Formal syntax, e.g. Baier et al.
CSL-like:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | S./p(Φ) | P./p(ϕ)

ϕ ::= Xt Φ | Φ U t Φ

2 CTMC, the reference Mathematical Objects, equipped with proper
theory

3 A relation between formulae and CTMC, the Formal Semantics
definition

s |= P≥p(ϕ) iff P{γ | γ |= ϕ} ≥ p

4 Automatic verification

, i.e. Stochastic Model Checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 111 / 113

A stochastic logics approach to
non-functional Requirement specification

1 Logic formulae, defined via a Formal syntax, e.g. Baier et al.
CSL-like:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | S./p(Φ) | P./p(ϕ)

ϕ ::= Xt Φ | Φ U t Φ

2 CTMC, the reference Mathematical Objects, equipped with proper
theory

3 A relation between formulae and CTMC, the Formal Semantics
definition

s |= P<p(ϕ) iff P{γ | γ |= ϕ} < p

4 Automatic verification

, i.e. Stochastic Model Checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 111 / 113

A stochastic logics approach to
non-functional Requirement specification

1 Logic formulae, defined via a Formal syntax, e.g. Baier et al.
CSL-like:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | S./p(Φ) | P./p(ϕ)

ϕ ::= Xt Φ | Φ U t Φ

2 CTMC, the reference Mathematical Objects, equipped with proper
theory

3 A relation between formulae and CTMC, the Formal Semantics
definition

s |= S≥p(Φ) iff the probability to be in a state s ′ s.t. s ′ |= Φ, in the
long run starting from s, is ≥ p.

4 Automatic verification

, i.e. Stochastic Model Checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 111 / 113

A stochastic logics approach to
non-functional Requirement specification

1 Logic formulae, defined via a Formal syntax, e.g. Baier et al.
CSL-like:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | S./p(Φ) | P./p(ϕ)

ϕ ::= Xt Φ | Φ U t Φ

2 CTMC, the reference Mathematical Objects, equipped with proper
theory

3 A relation between formulae and CTMC, the Formal Semantics
definition

s |= S≥p(Φ) iff the probability to be in a state s ′ s.t. s ′ |= Φ, in the
long run starting from s, is ≥ p.

4 Automatic verification

, i.e. Stochastic Model Checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 111 / 113

A stochastic logics approach to
non-functional Requirement specification

1 Logic formulae, defined via a Formal syntax, e.g. Baier et al.
CSL-like:

A ::= tt | a | . . .
Φ ::= A | ¬Φ | Φ ∧ Φ | Φ ∨ Φ | S./p(Φ) | P./p(ϕ)

ϕ ::= Xt Φ | Φ U t Φ

2 CTMC, the reference Mathematical Objects, equipped with proper
theory

3 A relation between formulae and CTMC, the Formal Semantics
definition

s |= S≥p(Φ) iff the probability to be in a state s ′ s.t. s ′ |= Φ, in the
long run starting from s, is ≥ p.

4 Automatic verification, i.e. Stochastic Model Checking

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 111 / 113

THANK YOU!!

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 112 / 113

Jan A. Bergstra, Alban Ponse, and Scott A. Smolka (editors). Handbook of
Process Algebra.
Elsevier, ISBN: 0-444-82830-3, 2001.

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking
MIT Press 2008

C. A. R. Hoare. Communicating Sequential Processes.
Prentice Hall International. 2004

Robin Milner. A Calculus of Communicating Systems
Springer Verlag ISBN 0-387-10235-3. 1980.

Robin Milner. Communication and Concurrency
Prentice Hall, International Series in Computer Science
ISBN 0-131-15007-3. 1989

Matthew Hennessy. Algebraic Theory of Processes
MIT Press 1988.

Edmund Clarke, Orna Grumberg, Doron Peled. Model Checking
The MIT Press 2000.

Gerald Holzmann. The SPIN Model Checker. Primer and Reference Manual
Addison-Wesley 2003.

c© D. Latella (CNR/ISTI) FM4CSDA SEFM 2010 113 / 113

